Using DeepGCN to identify the autism spectrum disorder from multi-site resting-state data

计算机科学 自闭症谱系障碍 平滑的 图形 模式识别(心理学) 支持向量机 模态(人机交互) 自闭症 人工智能 卷积神经网络 机器学习 心理学 精神科 计算机视觉 理论计算机科学
作者
Menglin Cao,Ming–Hsuan Yang,Chi Qin,Xiaofei Zhu,Yanni Chen,Jue Wang,Tian Liu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:70: 103015-103015 被引量:83
标识
DOI:10.1016/j.bspc.2021.103015
摘要

It is challenging to discriminate Autism spectrum disorder (ASD) from a highly heterogeneous database, because there is a great deal of uncontrollable variability in the data from different sites. The enormous success of graph convolutional neural networks (GCNs) in disease prediction based on multi-site data has sparked recent interest in applying GCNs in diagnosis of ASD. However, the current research results are all based on shallow GCNs. The main objective of this research was to improve the classification results by using DeepGCN. We constructed a deep ASD diagnosing framework based on 16-layer GCN. And ResNet units and DropEdge strategy were integrated into the DeepGCN model to avoid the vanishing gradient, over-fitting and over-smoothing. We combined the scale information with neuroimaging to form a graph structure based on the ABIDE dataset I, which contains a total of 871 subjects from 17 sites. We compared the DeepGCN results with well-established models based on the same subjects. The mean accuracy of our classification algorithm is 73.7% for classifying ASD versus normal controls (GCN: 70.4%, SVM-l2: 66.8%, Metric Learning: 62.9%). We introduce a new perspective for studying the biological markers of early diagnosis of ASD based on multi-site and multi-modality data. Meanwhile, it can be easily applied to various mental illnesses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助nano_yan采纳,获得10
刚刚
SU完成签到,获得积分10
4秒前
5秒前
wait完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
Yojane完成签到,获得积分10
7秒前
可爱的猪猪完成签到,获得积分10
9秒前
10秒前
hrzmlily发布了新的文献求助10
10秒前
Yojane发布了新的文献求助30
10秒前
ling发布了新的文献求助10
11秒前
15秒前
16秒前
feiyang完成签到 ,获得积分10
17秒前
18秒前
19秒前
nano_yan发布了新的文献求助10
19秒前
21秒前
22秒前
XYZ发布了新的文献求助10
22秒前
唯梦发布了新的文献求助10
23秒前
Summeryz920发布了新的文献求助10
25秒前
FashionBoy应助唯梦采纳,获得10
26秒前
hrzmlily完成签到,获得积分10
27秒前
朽木发布了新的文献求助10
27秒前
鲁路修完成签到,获得积分10
28秒前
31秒前
琛zyc123完成签到,获得积分10
31秒前
34秒前
35秒前
川ccc发布了新的文献求助10
36秒前
37秒前
Akim应助郭宇采纳,获得10
37秒前
ShiRz发布了新的文献求助10
38秒前
ling完成签到,获得积分10
38秒前
39秒前
40秒前
hmhu发布了新的文献求助10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944