PepFormer: End-to-End Transformer-Based Siamese Network to Predict and Enhance Peptide Detectability Based on Sequence Only

判别式 人工智能 变压器 水准点(测量) 计算机科学 一般化 源代码 机器学习 端到端原则 化学 地理 大地测量学 电压 数学分析 物理 操作系统 量子力学 数学
作者
Hao Cheng,B. Dharma Rao,Lei Lü,Lizhen Cui,Guobao Xiao,Ran Su,Leyi Wei
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (16): 6481-6490 被引量:33
标识
DOI:10.1021/acs.analchem.1c00354
摘要

The detectability of peptides is fundamentally important in shotgun proteomics experiments. At present, there are many computational methods to predict the detectability of peptides based on sequential composition or physicochemical properties, but they all have various shortcomings. Here, we present PepFormer, a novel end-to-end Siamese network coupled with a hybrid architecture of a Transformer and gated recurrent units that is able to predict the peptide detectability based on peptide sequences only. Specially, we, for the first time, use contrastive learning and construct a new loss function for model training, greatly improving the generalization ability of our predictive model. Comparative results demonstrate that our model performs significantly better than state-of-the-art methods on benchmark data sets in two species (Homo sapiens and Mus musculus). To make the model more interpretable, we further investigate the embedded representations of peptide sequences automatically learnt from our model, and the visualization results indicate that our model can efficiently capture high-latent discriminative information, improving the predictive performance. In addition, our model shows a strong ability of cross-species transfer learning and adaptability, demonstrating that it has great potential in robust prediction of peptides detectability on different species. The source code of our proposed method can be found via https://github.com/WLYLab/PepFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助ANDRT采纳,获得10
1秒前
十一完成签到,获得积分10
2秒前
2秒前
3秒前
FashionBoy应助外向秋灵采纳,获得10
6秒前
星星完成签到,获得积分10
7秒前
MOF@COF发布了新的文献求助10
7秒前
Meowzart发布了新的文献求助10
7秒前
星辰大海应助mito采纳,获得10
8秒前
含糊的从云完成签到,获得积分20
8秒前
8秒前
yue发布了新的文献求助10
9秒前
9秒前
来日可追应助ZY采纳,获得10
10秒前
10秒前
MOF@COF完成签到,获得积分10
11秒前
斯文败类应助闪闪糖豆采纳,获得10
11秒前
zlzlzte完成签到 ,获得积分10
11秒前
章小白完成签到,获得积分10
12秒前
muzixin发布了新的文献求助10
12秒前
所所应助CAIJING采纳,获得30
13秒前
zyk发布了新的文献求助10
13秒前
xxxxfiona发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
15秒前
爆米花应助逆旅如行人采纳,获得10
16秒前
Star应助李荣航采纳,获得10
16秒前
17秒前
JamesPei应助雷寒云采纳,获得10
18秒前
上官若男应助MY采纳,获得30
18秒前
perovskite发布了新的文献求助10
18秒前
知更鸟完成签到,获得积分10
19秒前
mito发布了新的文献求助10
19秒前
ZjieY发布了新的文献求助10
20秒前
李烛尘完成签到,获得积分10
20秒前
小蘑菇应助361采纳,获得10
20秒前
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807380
求助须知:如何正确求助?哪些是违规求助? 3352160
关于积分的说明 10357573
捐赠科研通 3068183
什么是DOI,文献DOI怎么找? 1684884
邀请新用户注册赠送积分活动 809995
科研通“疑难数据库(出版商)”最低求助积分说明 765853