清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning for electroencephalogram (EEG) classification tasks: a review

深度学习 脑电图 计算机科学 人工智能 卷积神经网络 机器学习 人工神经网络 脑-机接口 神经影像学 模式识别(心理学) 神经科学 心理学
作者
Alexander Craik,Yongtian He,José L. Contreras-Vidal
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:16 (3): 031001-031001 被引量:1193
标识
DOI:10.1088/1741-2552/ab0ab5
摘要

Electroencephalography (EEG) analysis has been an important tool in neuroscience with applications in neuroscience, neural engineering (e.g. Brain-computer interfaces, BCI's), and even commercial applications. Many of the analytical tools used in EEG studies have used machine learning to uncover relevant information for neural classification and neuroimaging. Recently, the availability of large EEG data sets and advances in machine learning have both led to the deployment of deep learning architectures, especially in the analysis of EEG signals and in understanding the information it may contain for brain functionality. The robust automatic classification of these signals is an important step towards making the use of EEG more practical in many applications and less reliant on trained professionals. Towards this goal, a systematic review of the literature on deep learning applications to EEG classification was performed to address the following critical questions: (1) Which EEG classification tasks have been explored with deep learning? (2) What input formulations have been used for training the deep networks? (3) Are there specific deep learning network structures suitable for specific types of tasks?A systematic literature review of EEG classification using deep learning was performed on Web of Science and PubMed databases, resulting in 90 identified studies. Those studies were analyzed based on type of task, EEG preprocessing methods, input type, and deep learning architecture.For EEG classification tasks, convolutional neural networks, recurrent neural networks, deep belief networks outperform stacked auto-encoders and multi-layer perceptron neural networks in classification accuracy. The tasks that used deep learning fell into five general groups: emotion recognition, motor imagery, mental workload, seizure detection, event related potential detection, and sleep scoring. For each type of task, we describe the specific input formulation, major characteristics, and end classifier recommendations found through this review.This review summarizes the current practices and performance outcomes in the use of deep learning for EEG classification. Practical suggestions on the selection of many hyperparameters are provided in the hope that they will promote or guide the deployment of deep learning to EEG datasets in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助wise111采纳,获得10
刚刚
1秒前
677完成签到 ,获得积分10
7秒前
大模型应助Jasmine采纳,获得10
7秒前
gincle完成签到 ,获得积分10
23秒前
26秒前
个性归尘给伶俜的求助进行了留言
26秒前
HXL完成签到 ,获得积分10
29秒前
LELE完成签到 ,获得积分10
32秒前
Alex-Song完成签到 ,获得积分0
32秒前
37秒前
花誓lydia完成签到 ,获得积分10
37秒前
38秒前
Jasmine发布了新的文献求助10
45秒前
济民财完成签到,获得积分10
46秒前
xkhxh完成签到 ,获得积分10
49秒前
55秒前
Ying完成签到,获得积分10
58秒前
1分钟前
Adam完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
shenlee发布了新的文献求助10
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
GGBond完成签到 ,获得积分10
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
devilito完成签到,获得积分10
1分钟前
1分钟前
贰鸟应助科研通管家采纳,获得20
1分钟前
贰鸟应助科研通管家采纳,获得20
1分钟前
大个应助maolao采纳,获得10
1分钟前
科研临床两手抓完成签到 ,获得积分10
1分钟前
momo完成签到,获得积分10
2分钟前
tangchao完成签到,获得积分10
2分钟前
阿瑞完成签到 ,获得积分10
2分钟前
dong完成签到 ,获得积分10
2分钟前
mzhang2完成签到 ,获得积分10
2分钟前
乐悠悠完成签到 ,获得积分10
2分钟前
追梦完成签到,获得积分10
2分钟前
wangwang完成签到,获得积分10
2分钟前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Feminist Explorations of Urban China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372816
关于积分的说明 10475466
捐赠科研通 3092636
什么是DOI,文献DOI怎么找? 1702237
邀请新用户注册赠送积分活动 818839
科研通“疑难数据库(出版商)”最低求助积分说明 771101