Nonlinear growth curve modeling using penalized spline models: A gentle introduction.

花键(机械) 数学 平滑度 线性模型 非线性系统 计算机科学 应用数学 平滑样条曲线 算法 分段 数学优化 统计 双线性插值 样条插值 工程类 物理 数学分析 结构工程 量子力学
作者
Hye Won Suk,Stephen G. West,Kimberly L. Fine,Kevin J. Grimm
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:24 (3): 269-290 被引量:22
标识
DOI:10.1037/met0000193
摘要

This didactic article aims to provide a gentle introduction to penalized splines as a way of estimating nonlinear growth curves in which many observations are collected over time on a single or multiple individuals. We begin by presenting piecewise linear models in which the time domain of the data is divided into consecutive phases and a separate linear regression line is fitted in each phase. Linear splines add the feature that the regression lines fitted in adjacent phases are always joined at the boundary so there is no discontinuity in level between phases. Splines are highly flexible raising the fundamental tradeoff between model fit and smoothness of the curve. Penalized spline models address this tradeoff by introducing a penalty term to achieve balance between fit and smoothness. The linear mixed-effects model, familiar from multilevel analysis, is introduced as a method for estimating penalized spline models. Higher order spline models using quadratic or cubic functions which further enhance a smooth fit are introduced. Technical issues in estimation, hypothesis testing, and constructing confidence intervals for higher order penalized spline models are considered. We then use data from the Early Childhood Longitudinal Study to illustrate each step in fitting a higher order penalized spline model, and to illustrate hypothesis testing, the construction of confidence intervals, and the comparison of the functions in 2 groups (boys and girls). Extensive graphical illustrations are provided throughout. Annotated computer scripts using the R package nlme are provided in online supplemental materials. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强健的宛儿完成签到,获得积分10
1秒前
乔乔完成签到,获得积分10
1秒前
小红发布了新的文献求助10
1秒前
冬瓜完成签到,获得积分10
1秒前
封印完成签到,获得积分10
2秒前
2秒前
新奇完成签到 ,获得积分10
2秒前
smile完成签到,获得积分10
3秒前
3秒前
乔乔发布了新的文献求助10
4秒前
4秒前
QZ发布了新的文献求助10
6秒前
6秒前
lnb666777888发布了新的文献求助10
6秒前
loin完成签到,获得积分10
8秒前
英姑应助春悠然采纳,获得50
8秒前
只道寻常发布了新的文献求助10
9秒前
哦吼吼完成签到 ,获得积分10
10秒前
清脆代桃完成签到 ,获得积分10
11秒前
orangetwo发布了新的文献求助10
11秒前
白菜完成签到,获得积分10
12秒前
mmmmm完成签到,获得积分10
12秒前
12秒前
稳稳完成签到,获得积分10
13秒前
搜集达人应助长文采纳,获得10
14秒前
la完成签到,获得积分10
15秒前
水上书完成签到,获得积分10
15秒前
勇敢的骑士完成签到,获得积分20
15秒前
xiaoqianqian174完成签到,获得积分10
15秒前
16秒前
张家木完成签到,获得积分10
16秒前
丑丑阿完成签到,获得积分10
16秒前
自然访彤完成签到,获得积分10
16秒前
jbq完成签到,获得积分10
16秒前
耍酷问兰发布了新的文献求助10
16秒前
yyawkx完成签到,获得积分10
17秒前
NexusExplorer应助跳跃的翠桃采纳,获得10
18秒前
丘山发布了新的文献求助10
19秒前
hjg完成签到,获得积分10
19秒前
orangetwo完成签到,获得积分10
20秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4081524
求助须知:如何正确求助?哪些是违规求助? 3620933
关于积分的说明 11487672
捐赠科研通 3336414
什么是DOI,文献DOI怎么找? 1834112
邀请新用户注册赠送积分活动 902897
科研通“疑难数据库(出版商)”最低求助积分说明 821351