超立方体
实施
计算机科学
跟踪(心理语言学)
各项异性扩散
扩散
高斯分布
算法
非线性系统
架空(工程)
高光谱成像
理论计算机科学
人工智能
并行计算
图像(数学)
操作系统
物理
哲学
热力学
程序设计语言
量子力学
语言学
作者
Roi Méndez-Rial,Julio Martín-Herrero
标识
DOI:10.1109/tip.2011.2179059
摘要
Semi-implicit schemes have been recently shown to speed up nonlinear diffusion in hyperspectral images while increasing the accuracy of subsequent classifiers in thematic mapping. Here, we show how semi-implicit schemes can be used to implement a truly anisotropic diffusion method for hyperspectral images, and we test the performance of different implementations in terms of computational overhead, speed, numerical accuracy, and thematic mapping performance. In addition, truly anisotropic trace-based diffusion formulations, besides a more precise steering of the diffusion processes, also allow implementation by means of local oriented Gaussian masks. We show how the implementations with the highest numerical accuracy can be also the simplest and fastest while still increasing the classification performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI