Regularization of nonlinear decomposition of spectral x‐ray projection images

成像体模 正规化(语言学) 迭代重建 算法 非线性系统 投影(关系代数) 数学 数学优化 计算机科学 光学 物理 人工智能 量子力学
作者
Nicolas Ducros,Juan Abascal,Bruno Sixou,Simon Rit,Françoise Peyrin
出处
期刊:Medical Physics [Wiley]
卷期号:44 (9) 被引量:82
标识
DOI:10.1002/mp.12283
摘要

Exploiting the x-ray measurements obtained in different energy bins, spectral computed tomography (CT) has the ability to recover the 3-D description of a patient in a material basis. This may be achieved solving two subproblems, namely the material decomposition and the tomographic reconstruction problems. In this work, we address the material decomposition of spectral x-ray projection images, which is a nonlinear ill-posed problem.Our main contribution is to introduce a material-dependent spatial regularization in the projection domain. The decomposition problem is solved iteratively using a Gauss-Newton algorithm that can benefit from fast linear solvers. A Matlab implementation is available online. The proposed regularized weighted least squares Gauss-Newton algorithm (RWLS-GN) is validated on numerical simulations of a thorax phantom made of up to five materials (soft tissue, bone, lung, adipose tissue, and gadolinium), which is scanned with a 120 kV source and imaged by a 4-bin photon counting detector. To evaluate the method performance of our algorithm, different scenarios are created by varying the number of incident photons, the concentration of the marker and the configuration of the phantom. The RWLS-GN method is compared to the reference maximum likelihood Nelder-Mead algorithm (ML-NM). The convergence of the proposed method and its dependence on the regularization parameter are also studied.We show that material decomposition is feasible with the proposed method and that it converges in few iterations. Material decomposition with ML-NM was very sensitive to noise, leading to decomposed images highly affected by noise, and artifacts even for the best case scenario. The proposed method was less sensitive to noise and improved contrast-to-noise ratio of the gadolinium image. Results were superior to those provided by ML-NM in terms of image quality and decomposition was 70 times faster. For the assessed experiments, material decomposition was possible with the proposed method when the number of incident photons was equal or larger than 105 and when the marker concentration was equal or larger than 0.03 g·cm-3 .The proposed method efficiently solves the nonlinear decomposition problem for spectral CT, which opens up new possibilities such as material-specific regularization in the projection domain and a parallelization framework, in which projections are solved in parallel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助喻踏歌采纳,获得10
1秒前
2秒前
南风完成签到,获得积分10
3秒前
Micheallee发布了新的文献求助10
3秒前
3秒前
TWO宝发布了新的文献求助10
4秒前
4秒前
yiren发布了新的文献求助10
4秒前
zzp发布了新的文献求助10
5秒前
6秒前
深情安青应助可靠的采萱采纳,获得10
7秒前
xn201120发布了新的文献求助10
9秒前
10秒前
浮生发布了新的文献求助10
10秒前
大模型应助寒冰寒冰采纳,获得10
11秒前
张小盒发布了新的文献求助10
12秒前
大个应助wise111采纳,获得10
13秒前
15秒前
bkagyin应助裴胜轩DAD采纳,获得10
15秒前
sk夏冰完成签到 ,获得积分10
15秒前
超级柜子完成签到,获得积分10
16秒前
随遇而安完成签到,获得积分10
16秒前
16秒前
充电宝应助Mobitz采纳,获得10
18秒前
19秒前
SCI完成签到,获得积分10
19秒前
19秒前
xn201120发布了新的文献求助10
19秒前
充电宝应助鲤鱼水壶采纳,获得10
19秒前
Liow应助Karol采纳,获得50
20秒前
21秒前
火以敬完成签到,获得积分10
22秒前
寒冰寒冰发布了新的文献求助10
23秒前
24秒前
传奇3应助山水木采纳,获得10
25秒前
hgf完成签到,获得积分10
25秒前
123完成签到 ,获得积分10
25秒前
26秒前
wise111发布了新的文献求助10
28秒前
29秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916154
求助须知:如何正确求助?哪些是违规求助? 3461715
关于积分的说明 10918533
捐赠科研通 3188554
什么是DOI,文献DOI怎么找? 1762704
邀请新用户注册赠送积分活动 853070
科研通“疑难数据库(出版商)”最低求助积分说明 793649