钝化
材料科学
钙钛矿(结构)
串联
卤化物
带隙
相(物质)
热稳定性
晶界
化学工程
光电子学
能量转换效率
钙钛矿太阳能电池
纳米技术
无机化学
有机化学
复合材料
化学
微观结构
图层(电子)
工程类
作者
Jie Xu,Jian Cui,Shaomin Yang,Zhike Liu,Xi Guo,Yuhang Che,Dongfang Xu,Wenjing Zhao,Ningyi Yuan,Jianning Ding,Shengzhong Liu
标识
DOI:10.1002/adfm.202202829
摘要
Abstract CsPbI 2 Br perovskite is known for its advantages over its organic‐inorganic hybrid counterpart including better thermal stability and appropriate bandgap for the front sub‐cell of tandem solar cell. However, its lower‐than‐satisfactory efficiency, problematic phase stability and sensitivity to moisture hinder its further advancement. Here, three kinds of glycine halides (Gly‐ X : X = Cl, Br, and I) are strategically deigned to improve the performance of CsPbI 2 Br perovskite solar cells (PSCs). Systematic experimental and calculated results prove that a 2D/3D hybrid structure is formed, wherein the Gly‐X‐based 2D perovskite is mainly located at the CsPbI 2 Br grain boundaries, and the A‐sites of the 2D perovskite form strong bonds with the 3D perovskite to suppress ion migration by increasing its activation energy. As a result, a power conversion efficiency (PCE) of 17.26% was obtained with an open‐circuit voltage ( V OC ) of 1.33 V, which is among the best PCE values for the CsPbI 2 Br PSCs. In addition, the efficiency of encapsulated device decrease only by 14.1% after 340 h continuous illumination in ambient conditions, representing one of the most‐stable inorganic PSCs reported so far. This work provides important insights into designing passivating agents to address the issue of phase segregation for the development of highly stable perovskite optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI