亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT angiography-based radiomics as a tool for carotid plaque characterization: a pilot study

医学 特征选择 人工智能 支持向量机 模式识别(心理学) 逻辑回归 单变量 二元分类 逐步回归 特征提取 交叉验证 多元统计 计算机科学 数学 机器学习
作者
Savino Cilla,Gabriella Macchia,Jacopo Lenkowicz,Huong Elena Tran,Antonio Pierro,Lella Petrella,Mara Fanelli,Celestino Sardu,Alessia Re,Luca Boldrini,Luca Indovina,Carlo Maria De Filippo,Eugenio Caradonna,Francesco Deodato,Massimo Massetti,Vincenzo Valentini,Pietro Modugno
出处
期刊:Radiologia Medica [Springer Science+Business Media]
卷期号:127 (7): 743-753 被引量:23
标识
DOI:10.1007/s11547-022-01505-5
摘要

Radiomics is a quantitative method able to analyze a high-throughput extraction of minable imaging features. Herein, we aim to develop a CT angiography-based radiomics analysis and machine learning model for carotid plaques to discriminate vulnerable from no vulnerable plaques.Thirty consecutive patients with carotid atherosclerosis were enrolled in this pilot study. At surgery, a binary classification of plaques was adopted ("hard" vs "soft"). Feature extraction was performed using the R software package Moddicom. Pairwise feature interdependencies were evaluated using the Spearman rank correlation coefficient. A univariate analysis was performed to assess the association between each feature and the plaque classification and chose top-ranked features. The feature predictive value was investigated using binary logistic regression. A stepwise backward elimination procedure was performed to minimize the Akaike information criterion (AIC). The final significant features were used to build the models for binary classification of carotid plaques, including logistic regression (LR), support vector machine (SVM), and classification and regression tree analysis (CART). All models were cross-validated using fivefold cross validation. Class-specific accuracy, precision, recall and F-measure evaluation metrics were used to quantify classifier output quality.A total of 230 radiomics features were extracted from each plaque. Pairwise Spearman correlation between features reported a high level of correlations, with more than 80% correlating with at least one other feature at |ρ|> 0.8. After a stepwise backward elimination procedure, the entropy and volume features were found to be the most significantly associated with the two plaque groups (p < 0.001), with AUCs of 0.92 and 0.96, respectively. The best performance was registered by the SVM classifier with the RBF kernel, with accuracy, precision, recall and F-score equal to 86.7, 92.9, 81.3 and 86.7%, respectively. The CART classification tree model for the entropy and volume features model achieved 86.7% well-classified plaques and an AUC of 0.987.This pilot study highlighted the potential of CTA-based radiomics and machine learning to discriminate plaque composition. This new approach has the potential to provide a reliable method to improve risk stratification in patients with carotid atherosclerosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
酷波er应助科研通管家采纳,获得10
3秒前
9秒前
lonepl完成签到,获得积分10
11秒前
搜集达人应助lonepl采纳,获得10
15秒前
大直发布了新的文献求助20
15秒前
17秒前
19秒前
房谷槐发布了新的文献求助10
23秒前
不瞌睡应助大直采纳,获得10
24秒前
31秒前
31秒前
claire发布了新的文献求助30
35秒前
obedVL完成签到,获得积分10
44秒前
58秒前
1分钟前
开放的大侠完成签到,获得积分10
1分钟前
Ricardo完成签到 ,获得积分10
1分钟前
Orange应助陶醉小土豆采纳,获得10
1分钟前
李健应助wenbo采纳,获得10
1分钟前
1分钟前
1分钟前
FashionBoy应助柯代卫采纳,获得10
1分钟前
1分钟前
ltt应助oleskarabach采纳,获得10
1分钟前
Kuga应助oleskarabach采纳,获得10
1分钟前
千纸鹤完成签到 ,获得积分10
1分钟前
dax大雄完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
可达鸭发布了新的文献求助10
2分钟前
2分钟前
2分钟前
gaga发布了新的文献求助10
2分钟前
2分钟前
柯代卫发布了新的文献求助10
2分钟前
碳酸芙兰完成签到,获得积分10
2分钟前
axiao完成签到,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906824
求助须知:如何正确求助?哪些是违规求助? 3452354
关于积分的说明 10870101
捐赠科研通 3178166
什么是DOI,文献DOI怎么找? 1755805
邀请新用户注册赠送积分活动 849100
科研通“疑难数据库(出版商)”最低求助积分说明 791352