亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT angiography-based radiomics as a tool for carotid plaque characterization: a pilot study

医学 特征选择 人工智能 支持向量机 模式识别(心理学) 逻辑回归 单变量 二元分类 逐步回归 特征提取 交叉验证 多元统计 计算机科学 数学 机器学习
作者
Savino Cilla,Gabriella Macchia,Jacopo Lenkowicz,Huong Elena Tran,Antonio Pierro,Lella Petrella,Mara Fanelli,Celestino Sardu,Alessia Re,Luca Boldrini,Luca Indovina,Carlo Maria De Filippo,Eugenio Caradonna,Francesco Deodato,Massimo Massetti,Vincenzo Valentini,Pietro Modugno
出处
期刊:Radiologia Medica [Springer Nature]
卷期号:127 (7): 743-753 被引量:33
标识
DOI:10.1007/s11547-022-01505-5
摘要

Radiomics is a quantitative method able to analyze a high-throughput extraction of minable imaging features. Herein, we aim to develop a CT angiography-based radiomics analysis and machine learning model for carotid plaques to discriminate vulnerable from no vulnerable plaques.Thirty consecutive patients with carotid atherosclerosis were enrolled in this pilot study. At surgery, a binary classification of plaques was adopted ("hard" vs "soft"). Feature extraction was performed using the R software package Moddicom. Pairwise feature interdependencies were evaluated using the Spearman rank correlation coefficient. A univariate analysis was performed to assess the association between each feature and the plaque classification and chose top-ranked features. The feature predictive value was investigated using binary logistic regression. A stepwise backward elimination procedure was performed to minimize the Akaike information criterion (AIC). The final significant features were used to build the models for binary classification of carotid plaques, including logistic regression (LR), support vector machine (SVM), and classification and regression tree analysis (CART). All models were cross-validated using fivefold cross validation. Class-specific accuracy, precision, recall and F-measure evaluation metrics were used to quantify classifier output quality.A total of 230 radiomics features were extracted from each plaque. Pairwise Spearman correlation between features reported a high level of correlations, with more than 80% correlating with at least one other feature at |ρ|> 0.8. After a stepwise backward elimination procedure, the entropy and volume features were found to be the most significantly associated with the two plaque groups (p < 0.001), with AUCs of 0.92 and 0.96, respectively. The best performance was registered by the SVM classifier with the RBF kernel, with accuracy, precision, recall and F-score equal to 86.7, 92.9, 81.3 and 86.7%, respectively. The CART classification tree model for the entropy and volume features model achieved 86.7% well-classified plaques and an AUC of 0.987.This pilot study highlighted the potential of CTA-based radiomics and machine learning to discriminate plaque composition. This new approach has the potential to provide a reliable method to improve risk stratification in patients with carotid atherosclerosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ffff完成签到 ,获得积分10
刚刚
huxuehong完成签到 ,获得积分10
23秒前
33秒前
jinyue完成签到 ,获得积分10
33秒前
34秒前
utopia发布了新的文献求助10
37秒前
jachin完成签到 ,获得积分10
37秒前
41秒前
48秒前
Yu发布了新的文献求助10
54秒前
55秒前
55秒前
55秒前
英姑应助科研通管家采纳,获得10
55秒前
55秒前
55秒前
慕青应助科研通管家采纳,获得10
56秒前
CipherSage应助科研通管家采纳,获得10
56秒前
amengptsd完成签到,获得积分10
1分钟前
1分钟前
天天快乐应助Yu采纳,获得10
1分钟前
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
1分钟前
神勇嫣完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
lixiangyi1发布了新的文献求助10
1分钟前
1分钟前
轨迹应助Shuo Yang采纳,获得30
1分钟前
1分钟前
AX完成签到,获得积分10
2分钟前
科研通AI6.1应助炙热成仁采纳,获得10
2分钟前
2分钟前
2分钟前
内秀发布了新的文献求助10
2分钟前
111完成签到 ,获得积分20
2分钟前
太阳当空照完成签到 ,获得积分10
2分钟前
内秀完成签到,获得积分10
2分钟前
LJL完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763854
求助须知:如何正确求助?哪些是违规求助? 5544969
关于积分的说明 15405553
捐赠科研通 4899419
什么是DOI,文献DOI怎么找? 2635539
邀请新用户注册赠送积分活动 1583703
关于科研通互助平台的介绍 1538795