CT angiography-based radiomics as a tool for carotid plaque characterization: a pilot study

医学 特征选择 人工智能 支持向量机 模式识别(心理学) 逻辑回归 单变量 二元分类 逐步回归 特征提取 交叉验证 多元统计 计算机科学 数学 机器学习
作者
Savino Cilla,Gabriella Macchia,Jacopo Lenkowicz,Huong Elena Tran,Antonio Pierro,Lella Petrella,Mara Fanelli,Celestino Sardu,Alessia Re,Luca Boldrini,Luca Indovina,Carlo Maria De Filippo,Eugenio Caradonna,Francesco Deodato,Massimo Massetti,Vincenzo Valentini,Pietro Modugno
出处
期刊:Radiologia Medica [Springer Science+Business Media]
卷期号:127 (7): 743-753 被引量:23
标识
DOI:10.1007/s11547-022-01505-5
摘要

Radiomics is a quantitative method able to analyze a high-throughput extraction of minable imaging features. Herein, we aim to develop a CT angiography-based radiomics analysis and machine learning model for carotid plaques to discriminate vulnerable from no vulnerable plaques.Thirty consecutive patients with carotid atherosclerosis were enrolled in this pilot study. At surgery, a binary classification of plaques was adopted ("hard" vs "soft"). Feature extraction was performed using the R software package Moddicom. Pairwise feature interdependencies were evaluated using the Spearman rank correlation coefficient. A univariate analysis was performed to assess the association between each feature and the plaque classification and chose top-ranked features. The feature predictive value was investigated using binary logistic regression. A stepwise backward elimination procedure was performed to minimize the Akaike information criterion (AIC). The final significant features were used to build the models for binary classification of carotid plaques, including logistic regression (LR), support vector machine (SVM), and classification and regression tree analysis (CART). All models were cross-validated using fivefold cross validation. Class-specific accuracy, precision, recall and F-measure evaluation metrics were used to quantify classifier output quality.A total of 230 radiomics features were extracted from each plaque. Pairwise Spearman correlation between features reported a high level of correlations, with more than 80% correlating with at least one other feature at |ρ|> 0.8. After a stepwise backward elimination procedure, the entropy and volume features were found to be the most significantly associated with the two plaque groups (p < 0.001), with AUCs of 0.92 and 0.96, respectively. The best performance was registered by the SVM classifier with the RBF kernel, with accuracy, precision, recall and F-score equal to 86.7, 92.9, 81.3 and 86.7%, respectively. The CART classification tree model for the entropy and volume features model achieved 86.7% well-classified plaques and an AUC of 0.987.This pilot study highlighted the potential of CTA-based radiomics and machine learning to discriminate plaque composition. This new approach has the potential to provide a reliable method to improve risk stratification in patients with carotid atherosclerosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ss应助火星上云朵采纳,获得20
刚刚
内向问旋发布了新的文献求助10
刚刚
周诗蔼发布了新的文献求助10
1秒前
搜集达人应助bi8bo采纳,获得10
1秒前
66完成签到 ,获得积分10
3秒前
笑傲完成签到,获得积分10
4秒前
王小可完成签到 ,获得积分10
5秒前
5秒前
Chief完成签到,获得积分0
13秒前
13秒前
15秒前
18秒前
20秒前
Souliko发布了新的文献求助10
22秒前
九思给九思的求助进行了留言
22秒前
LIJINGGE发布了新的文献求助10
26秒前
xiaopingbing完成签到 ,获得积分10
30秒前
雪白的映菱完成签到 ,获得积分10
31秒前
35秒前
35秒前
研友_LwbYv8完成签到,获得积分10
36秒前
風起天岚完成签到,获得积分10
37秒前
大模型应助科研通管家采纳,获得10
39秒前
慕青应助科研通管家采纳,获得10
39秒前
Ava应助科研通管家采纳,获得10
39秒前
Owen应助科研通管家采纳,获得10
39秒前
慕青应助科研通管家采纳,获得10
39秒前
上官若男应助科研通管家采纳,获得10
39秒前
星辰大海应助科研通管家采纳,获得10
40秒前
星辰大海应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
40秒前
长情的书包完成签到,获得积分10
40秒前
LIJINGGE发布了新的文献求助10
41秒前
研友_LwbYv8发布了新的文献求助10
42秒前
Suica完成签到 ,获得积分10
42秒前
bi8bo完成签到,获得积分10
44秒前
源缘完成签到 ,获得积分10
44秒前
健壮问兰完成签到 ,获得积分10
44秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778743
求助须知:如何正确求助?哪些是违规求助? 3324286
关于积分的说明 10217819
捐赠科研通 3039427
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798533
科研通“疑难数据库(出版商)”最低求助积分说明 758401