Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network

计算机科学 概率逻辑 人工神经网络 概率神经网络 数据挖掘 人工智能 机器学习 时滞神经网络
作者
Yunhong Che,Yusheng Zheng,Yue Wu,Xin Sui,Pallavi Bharadwaj,Daniel‐Ioan Stroe,Yalian Yang,Xiao Hu,Remus Teodorescu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:323: 119663-119663 被引量:91
标识
DOI:10.1016/j.apenergy.2022.119663
摘要

• Deep learning with probabilistic regression for battery capacities estimation. • Sequential information-ensembled method for health indicators extraction. • Few checkpoints needed for battery degradation reconstruction and prediction. • Automatic selection of reference batteries for base model training. • Feature-enabled gaussian mixture cluster for early degradation recognition. Accurate and reliable prediction of the battery capacity degradation is vital for predictive health management. This paper proposes a novel framework to improve the accuracy and reliability of battery health prognostic. Firstly, sequential information-ensembled health indicators, which have high correlations with battery capacity and lifetime, are proposed based on partial voltage and capacity sequences. Then, the Gaussian mixture model is adopted for lifetime clustering to verify the effectiveness of the proposed health indicators and an automatic reference batteries selection method is proposed to find out the most relative candidates for degradation base model training. A long short-term memory network with probabilistic regression is leveraged for battery health prognostic, which provides the predicted mean value and confidence interval via Bayesian inference. Finally, the model migration is presented to further improve the accuracy and reliability, with only a few checkpoints used for re-training. The proposed framework for battery health prognostic is validated against four battery datasets, showing high accuracy and reliability. Specifically, the root mean square error and mean absolute error of health prognostic on all the battery cells in four battery dataset can be within 2% and 1.5%, respectively. The mean relative reductions of the above two errors reach 43.7% and 45.3% respectively compared to the conventional method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
zoe666应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
changping应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
changping应助科研通管家采纳,获得10
1秒前
zoe666应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得30
2秒前
clio发布了新的文献求助10
2秒前
菘蓝应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
zoe666应助科研通管家采纳,获得10
2秒前
3333完成签到,获得积分10
2秒前
changping应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
zoe666应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
zoe666应助科研通管家采纳,获得10
3秒前
yyyW发布了新的文献求助10
3秒前
3秒前
fenghuo发布了新的文献求助10
3秒前
3秒前
3秒前
小蘑菇应助铖陈采纳,获得10
3秒前
4秒前
Jasper应助忧郁的手链采纳,获得10
4秒前
乌日汗发布了新的文献求助10
4秒前
今后应助王俊王俊采纳,获得10
4秒前
4秒前
情怀应助muziLi采纳,获得10
5秒前
朝阳区李知恩应助宋凤娇采纳,获得20
5秒前
5秒前
田様应助hbhbj采纳,获得10
5秒前
量子星尘发布了新的文献求助150
6秒前
111111111发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5157653
求助须知:如何正确求助?哪些是违规求助? 4352786
关于积分的说明 13552773
捐赠科研通 4196145
什么是DOI,文献DOI怎么找? 2301482
邀请新用户注册赠送积分活动 1301266
关于科研通互助平台的介绍 1246394