Cumulative risk, factor analysis, and latent class analysis of childhood adversity data in a nationally representative sample

潜在类模型 验证性因素分析 心理学 忽视 路径分析(统计学) 毒物控制 结构方程建模 临床心理学 发展心理学 环境卫生 精神科 医学 数学 统计
作者
James Lian,Kim M. Kiely,Kaarin J. Anstey
出处
期刊:Child Abuse & Neglect [Elsevier BV]
卷期号:125: 105486-105486 被引量:37
标识
DOI:10.1016/j.chiabu.2022.105486
摘要

Childhood adversity is a multifaceted construct that is in need of comprehensive operationalisation.The aim of this study was to explore the optimal method to operationalise a scale of adverse childhood experiences (ACEs).Data were from Wave 1 of the Personality and Total Health (PATH) Through Life Project (N = 7485, 51% women). Participants from three age groups (20-25, 40-45, 60-65) retrospectively reported their childhood experiences of domestic adversity on a 17-item scale (e.g., physical abuse, verbal abuse, neglect, poverty).We compared three approaches to operationalising the 17-item scale: a cumulative risk approach, factor analysis, and latent class analysis (LCA). The cumulative risk and dimensional models were represented by a unidimensional and two-dimensional model respectively using confirmatory factor analysis (CFA).The cumulative risk approach and LCA were viable approaches to operationalising ACE data in PATH. CFA of the dimensional model produced latent factors of threat and deprivation that were highly correlated, potentially leading to problems with multicollinearity when estimating associations. LCA revealed six classes of ACEs: high adversity, low adversity, low affection, authoritarian upbringing, high parental dysfunction, and moderate parental dysfunction.Our study found multiple latent classes within a 17-item questionnaire assessing domestic adversity. Using both the cumulative method and latent class approach may be a more informative approach when examining the relationship between ACEs and later health outcomes. Future ACE studies may benefit by considering multi-dimensional approaches to operationalising adversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助梅雨季来信采纳,获得10
1秒前
LV完成签到 ,获得积分10
2秒前
迷路芝麻完成签到,获得积分10
3秒前
小高的茯苓糕完成签到,获得积分10
3秒前
airtermis完成签到 ,获得积分10
3秒前
辞清完成签到 ,获得积分10
6秒前
7秒前
无花果应助自觉觅柔采纳,获得10
7秒前
YK完成签到,获得积分10
10秒前
10秒前
12秒前
Ava应助科研通管家采纳,获得10
13秒前
夏来应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
老姚完成签到,获得积分10
14秒前
凌儿响叮当完成签到 ,获得积分10
15秒前
yiyao完成签到,获得积分10
18秒前
林结衣完成签到,获得积分10
19秒前
20秒前
平淡尔琴完成签到,获得积分10
20秒前
刘歌完成签到 ,获得积分10
21秒前
23秒前
King完成签到,获得积分10
23秒前
自觉觅柔发布了新的文献求助10
23秒前
ouyang完成签到 ,获得积分10
24秒前
fanfan完成签到 ,获得积分10
26秒前
天tian完成签到,获得积分10
27秒前
王十二完成签到 ,获得积分10
27秒前
ZHDNCG完成签到,获得积分10
28秒前
小柒柒完成签到,获得积分10
29秒前
29秒前
小小aa16完成签到,获得积分10
30秒前
科研螺丝完成签到 ,获得积分10
30秒前
jinggaier完成签到 ,获得积分10
30秒前
黑苹果完成签到,获得积分10
31秒前
lyy完成签到 ,获得积分10
32秒前
sjx1116完成签到 ,获得积分10
32秒前
34秒前
自觉觅柔完成签到,获得积分10
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359404
关于积分的说明 10402536
捐赠科研通 3077257
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743