Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution

剥脱关节 材料科学 石墨氮化碳 光催化 空位缺陷 化学工程 带隙 纳米片 催化作用 石墨烯 纳米技术 结晶学 光电子学 化学 有机化学 工程类
作者
Yazhou Zhang,Zhifu Huang,Chung‐Li Dong,Jinwen Shi,Cheng Cheng,Xiangjiu Guan,Shichao Zong,Bing Luo,Zening Cheng,Dequan Wei,Yu‐Cheng Huang,Shaohua Shen,Liejin Guo
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:431: 134101-134101 被引量:78
标识
DOI:10.1016/j.cej.2021.134101
摘要

Nanosheets exfoliation as one of the promising modification strategies for graphitic carbon nitride (g-C3N4) nanosheets has been extensively developed for improving the photocatalytic performance. However, it was commonly found that the enhancement of photocatalytic efficiency by effective nanosheets exfoliation hardly reached the expected satisfactory level, and the corresponding photocatalytic mechanism should be further investigated. Herein, on account of the well-designed thermal exfoliation strategy, the ultrathin and porous nanosheets with the thickness of three layers were elaborately constructed and possessed abundant N vacancies in the in-plane heptazine rings. Surprisingly, the ultrathin nanosheets exhibited superior visible-light-driven photocatalytic H2-evolution activity, with a H2-evolution rate (5.74 mmol h−1 g−1) 28.7 times that of the pristine g-C3N4, and with an apparent quantum yield (AQY) of 14.9% (420 nm) much higher than that of the previously reported ultrathin g-C3N4 nanosheets. It was confirmed by systematical characterizations and theoretical calculation that, the ultrathin and porous features in cooperation with local separation of the highest occupied molecular orbital and lowest unoccupied molecular orbital sites by N vacancy-dominated in-plane electronic structure, synergistically strengthened the separation of photo-generated carriers. Meanwhile, the incorporation of the N vacancy-induced midgap state could bring the highly efficient excitation of photo-generated carriers, and abundant photocatalytic reaction sites could be provided by the ultrathin two-dimensional (2D) microstructure. Furthermore, the ultrathin nanosheet-induced quantum confinement effect could enlarge the bandgap and then boost the driving force for water reduction. This work developed one unique synthetic route to g-C3N4 nanosheets exfoliation, and highlighted the synergistic function of nanosheets exfoliation and defect engineering for highly efficient photocatalytic H2 evolution, which would provide the feasible guidance for the exploitation of efficient g-C3N4 nanosheets-based photocatalytic system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
平静吧完成签到,获得积分10
1秒前
hairgod发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
Singularity发布了新的文献求助10
2秒前
3秒前
3秒前
飞翔的霸天哥应助元谷雪采纳,获得30
4秒前
专注的问筠完成签到,获得积分10
4秒前
zr发布了新的文献求助10
4秒前
4秒前
小吉发布了新的文献求助10
4秒前
5秒前
乐乐发布了新的文献求助10
6秒前
爱听歌的大地完成签到 ,获得积分10
6秒前
Ryannnn完成签到,获得积分10
6秒前
6秒前
咕噜噜发布了新的文献求助10
6秒前
7秒前
断水流小师弟完成签到,获得积分10
8秒前
ding应助yycc采纳,获得10
9秒前
Kingdom发布了新的文献求助10
10秒前
雨淼99完成签到 ,获得积分10
10秒前
11秒前
11秒前
KKK发布了新的文献求助10
11秒前
隐形曼青应助昼夜本色采纳,获得10
11秒前
PageWan发布了新的文献求助10
11秒前
11秒前
i_jueloa完成签到,获得积分10
12秒前
香菜完成签到,获得积分10
12秒前
热天气来一个绿茶降降温完成签到,获得积分10
12秒前
欣喜凡之完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
幽默涑发布了新的文献求助10
13秒前
Larock完成签到 ,获得积分10
16秒前
高分求助中
请在求助之前详细阅读求助说明 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The Three Stars Each: The Astrolabes and Related Texts 500
Sphäroguß als Werkstoff für Behälter zur Beförderung, Zwischen- und Endlagerung radioaktiver Stoffe - Untersuchung zu alternativen Eignungsnachweisen: Zusammenfassender Abschlußbericht 500
Additive Manufacturing Design and Applications 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2464076
求助须知:如何正确求助?哪些是违规求助? 2132670
关于积分的说明 5433909
捐赠科研通 1858853
什么是DOI,文献DOI怎么找? 924518
版权声明 562552
科研通“疑难数据库(出版商)”最低求助积分说明 494609