Electronic-Structure Tuning of Water-Splitting Nanocatalysts

析氧 过电位 分解水 纳米材料基催化剂 电化学 催化作用 化学 材料科学 纳米技术 化学物理 化学工程 电极 物理化学 生物化学 光催化 工程类 有机化学
作者
Wenxiu Yang,Zi-Chen Wang,Weiyu Zhang,Shaojun Guo
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:1 (2): 259-271 被引量:115
标识
DOI:10.1016/j.trechm.2019.03.006
摘要

The critical challenge of electrochemical water splitting (EWS) is to overcome the slow kinetics and large overpotential of the oxygen evolution reaction (OER). Although hydrogen evolution activity in acidic solutions has been achieved to a sufficient extent, acceptable activity of alkaline hydrogen evolution still remains to be achieved. Strategies such as alloying, doping, interfacing, oxygen-vacancy engineering, and edge-defect engineering can selectively adjust the electronic structure of nanocatalysts for enhanced EWS catalysis. To date, significant effort has been expended toward constructing efficient EWS electrocatalysts from two promising avenues: low-Pt precious metal (LPM) catalysts or non-precious metal (NPM) catalysts. Electrochemical water splitting (EWS) represents a promising pathway for the storage of intermittent energies, such as wind and solar, in the form of hydrogen gas. The operational efficiency of EWS is governed in part by the electrocatalysts for two electrode reactions, namely, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, we highlight recent fundamental and experimental progress on tuning the electronic structure of electrocatalysts for enhanced EWS. In particular, we discuss several strategies to adjust the electronic structure of nanoelectrocatalysts, including: alloying, doping, interfacing, incorporating oxygen vacancies, and edge-defect engineering. Finally, some invigorating perspectives for future research directions are also provided. Electrochemical water splitting (EWS) represents a promising pathway for the storage of intermittent energies, such as wind and solar, in the form of hydrogen gas. The operational efficiency of EWS is governed in part by the electrocatalysts for two electrode reactions, namely, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, we highlight recent fundamental and experimental progress on tuning the electronic structure of electrocatalysts for enhanced EWS. In particular, we discuss several strategies to adjust the electronic structure of nanoelectrocatalysts, including: alloying, doping, interfacing, incorporating oxygen vacancies, and edge-defect engineering. Finally, some invigorating perspectives for future research directions are also provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助高挑的幼翠采纳,获得10
1秒前
Sally发布了新的文献求助10
1秒前
玲子完成签到,获得积分10
1秒前
ZXH发布了新的文献求助10
3秒前
善学以致用应助解安珊采纳,获得10
4秒前
502s完成签到,获得积分10
4秒前
cjcjcj发布了新的文献求助10
4秒前
5秒前
DONGmumu完成签到,获得积分10
6秒前
胖心怡发布了新的文献求助10
6秒前
Unbelievable完成签到,获得积分10
6秒前
7秒前
lfyyyyy发布了新的文献求助30
7秒前
TT应助失联者采纳,获得10
7秒前
8秒前
cdercder应助Sally采纳,获得10
9秒前
jenningseastera应助淋湿巴黎采纳,获得10
9秒前
luluyang发布了新的文献求助20
9秒前
9秒前
大地上的鱼完成签到,获得积分10
9秒前
FashionBoy应助彩色莞采纳,获得10
10秒前
Eve丶Paopaoxuan应助xxi采纳,获得10
10秒前
10秒前
今后应助sdl采纳,获得10
10秒前
奋斗土豆发布了新的文献求助10
10秒前
ztr完成签到,获得积分10
10秒前
10秒前
JamesPei应助时尚俊驰采纳,获得10
10秒前
SCINEXUS应助fd163c采纳,获得50
11秒前
安东尼奥完成签到,获得积分10
11秒前
12秒前
12秒前
eveve完成签到 ,获得积分10
12秒前
zh完成签到,获得积分10
12秒前
只是个昵称完成签到,获得积分20
12秒前
鸡鱼蚝发布了新的文献求助10
12秒前
一一完成签到,获得积分10
13秒前
TT应助故事止于冬至采纳,获得20
13秒前
丂枧发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796238
求助须知:如何正确求助?哪些是违规求助? 3341180
关于积分的说明 10304661
捐赠科研通 3057743
什么是DOI,文献DOI怎么找? 1677834
邀请新用户注册赠送积分活动 805683
科研通“疑难数据库(出版商)”最低求助积分说明 762740