Electronic-Structure Tuning of Water-Splitting Nanocatalysts

析氧 过电位 分解水 纳米材料基催化剂 电化学 催化作用 化学 材料科学 纳米技术 化学物理 化学工程 电极 物理化学 生物化学 光催化 工程类 有机化学
作者
Wenxiu Yang,Zi-Chen Wang,Weiyu Zhang,Shaojun Guo
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:1 (2): 259-271 被引量:116
标识
DOI:10.1016/j.trechm.2019.03.006
摘要

The critical challenge of electrochemical water splitting (EWS) is to overcome the slow kinetics and large overpotential of the oxygen evolution reaction (OER). Although hydrogen evolution activity in acidic solutions has been achieved to a sufficient extent, acceptable activity of alkaline hydrogen evolution still remains to be achieved. Strategies such as alloying, doping, interfacing, oxygen-vacancy engineering, and edge-defect engineering can selectively adjust the electronic structure of nanocatalysts for enhanced EWS catalysis. To date, significant effort has been expended toward constructing efficient EWS electrocatalysts from two promising avenues: low-Pt precious metal (LPM) catalysts or non-precious metal (NPM) catalysts. Electrochemical water splitting (EWS) represents a promising pathway for the storage of intermittent energies, such as wind and solar, in the form of hydrogen gas. The operational efficiency of EWS is governed in part by the electrocatalysts for two electrode reactions, namely, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, we highlight recent fundamental and experimental progress on tuning the electronic structure of electrocatalysts for enhanced EWS. In particular, we discuss several strategies to adjust the electronic structure of nanoelectrocatalysts, including: alloying, doping, interfacing, incorporating oxygen vacancies, and edge-defect engineering. Finally, some invigorating perspectives for future research directions are also provided. Electrochemical water splitting (EWS) represents a promising pathway for the storage of intermittent energies, such as wind and solar, in the form of hydrogen gas. The operational efficiency of EWS is governed in part by the electrocatalysts for two electrode reactions, namely, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, we highlight recent fundamental and experimental progress on tuning the electronic structure of electrocatalysts for enhanced EWS. In particular, we discuss several strategies to adjust the electronic structure of nanoelectrocatalysts, including: alloying, doping, interfacing, incorporating oxygen vacancies, and edge-defect engineering. Finally, some invigorating perspectives for future research directions are also provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
乐乐应助必有重逢之日采纳,获得10
2秒前
希望天下0贩的0应助倾城采纳,获得100
3秒前
11发布了新的文献求助10
4秒前
paul发布了新的文献求助10
6秒前
灵巧乐儿完成签到,获得积分10
7秒前
tjycoder应助肖恩采纳,获得10
7秒前
liruiyi发布了新的文献求助10
7秒前
fafamimireredo完成签到,获得积分10
8秒前
10秒前
李健应助zhouxu采纳,获得10
11秒前
Fancy完成签到,获得积分10
11秒前
有点鸭梨呀完成签到 ,获得积分10
11秒前
13秒前
科研通AI5应助川川采纳,获得30
13秒前
善学以致用应助乖就采纳,获得10
14秒前
YHL发布了新的文献求助10
14秒前
16秒前
万能图书馆应助薄荷采纳,获得10
16秒前
SciGPT应助肖恩采纳,获得10
17秒前
18秒前
ha发布了新的文献求助10
20秒前
星沉静默发布了新的文献求助10
22秒前
liruiyi完成签到,获得积分10
23秒前
研友_nqr2pZ完成签到,获得积分10
24秒前
Akim应助CSI朝我来采纳,获得10
24秒前
26秒前
Johnson完成签到 ,获得积分10
26秒前
玺1发布了新的文献求助10
28秒前
科研通AI2S应助肖恩采纳,获得10
31秒前
paul完成签到,获得积分10
32秒前
关中人完成签到,获得积分10
32秒前
薄荷发布了新的文献求助10
33秒前
35秒前
36秒前
37秒前
37秒前
39秒前
薄荷发布了新的文献求助10
39秒前
123发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4493611
求助须知:如何正确求助?哪些是违规求助? 3946705
关于积分的说明 12237556
捐赠科研通 3604037
什么是DOI,文献DOI怎么找? 1982221
邀请新用户注册赠送积分活动 1018885
科研通“疑难数据库(出版商)”最低求助积分说明 911509