电离
等离子体
电场
原子物理学
介质阻挡放电
激发
大气压力
氩
扩散
大气压等离子体
振荡(细胞信号)
化学
振幅
等离子体参数
离子
电介质
材料科学
光电子学
光学
物理
有机化学
气象学
热力学
量子力学
生物化学
作者
Yaoge Liu,Kevin van ’t Veer,Floran Peeters,D Mihailova,Jan van Dijk,Sergey A. Starostin,M. C. M. van de Sanden,Hindrik W. de Vries
标识
DOI:10.1088/1361-6595/aae555
摘要
A 1D drift-diffusion model is used to study atmospheric-pressure dual-frequency (DF) dielectric barrier discharges in argon using the plasma modeling platform PLASIMO. The simulation exhibits an excellent agreement with the experimental results and gives insight into the DF plasma dynamics e.g. the electric field, sheath edge profiles, ionization/excitation rate and electron energy distribution function (EEDF) profiles. The results indicate that due to the radio-frequency oscillation, the electric field, sheath edge and thus the ionization/excitation are temporally modulated. As a result, the plasma conductivity is enhanced as the plasma density is higher. The discharge development is slowed down with a lower current amplitude and a longer duration. The time-averaged sheath is getting thinner with a more pronounced ionization rate and a longer contacting time near the substrate, which could help to improve the efficiency of plasma-assisted surface processing. In addition, the DF excitation exhibits a capability of modifying the EEDF profiles and controlling the plasma chemical kinetics, which can be applied to other relevant fields e.g. gas-phase chemical conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI