Recent advances and prospects of computational methods for metabolite identification: a review with emphasis on machine learning approaches

代谢组学 生物信息学 计算机科学 鉴定(生物学) 生物医学 机器学习 人工智能 计算生物学 任务(项目管理) 碎片(计算) 数据科学 生化工程 生物 生物信息学 工程类 系统工程 生物化学 基因 操作系统 植物
作者
Hai Nguyen,Canh Hao Nguyen,Hiroshi Mamitsuka
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:20 (6): 2028-2043 被引量:77
标识
DOI:10.1093/bib/bby066
摘要

Metabolomics involves studies of a great number of metabolites, which are small molecules present in biological systems. They play a lot of important functions such as energy transport, signaling, building block of cells and inhibition/catalysis. Understanding biochemical characteristics of the metabolites is an essential and significant part of metabolomics to enlarge the knowledge of biological systems. It is also the key to the development of many applications and areas such as biotechnology, biomedicine or pharmaceuticals. However, the identification of the metabolites remains a challenging task in metabolomics with a huge number of potentially interesting but unknown metabolites. The standard method for identifying metabolites is based on the mass spectrometry (MS) preceded by a separation technique. Over many decades, many techniques with different approaches have been proposed for MS-based metabolite identification task, which can be divided into the following four groups: mass spectra database, in silico fragmentation, fragmentation tree and machine learning. In this review paper, we thoroughly survey currently available tools for metabolite identification with the focus on in silico fragmentation, and machine learning-based approaches. We also give an intensive discussion on advanced machine learning methods, which can lead to further improvement on this task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情的寒风完成签到,获得积分20
1秒前
1秒前
万能图书馆应助Eric采纳,获得10
2秒前
外向的笑白完成签到,获得积分10
2秒前
RuiyuZhang完成签到,获得积分10
2秒前
2秒前
斯文败类应助语安采纳,获得10
2秒前
摩诃萨完成签到,获得积分10
3秒前
3秒前
雷寒云发布了新的文献求助10
4秒前
CC发布了新的文献求助10
4秒前
5秒前
5秒前
zz发布了新的文献求助10
5秒前
5秒前
xixi发布了新的文献求助10
6秒前
xin留下了新的社区评论
7秒前
852应助Natefong采纳,获得10
7秒前
Tiger-Cheng发布了新的文献求助50
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
josui完成签到,获得积分10
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
8秒前
有机化学小菜完成签到 ,获得积分20
8秒前
大个应助多情捕采纳,获得10
9秒前
科目三应助Dore采纳,获得10
9秒前
ibigbird发布了新的文献求助10
9秒前
顺顺完成签到 ,获得积分10
9秒前
Xuan发布了新的文献求助10
10秒前
ShengzhangLiu发布了新的文献求助10
10秒前
harry发布了新的文献求助10
11秒前
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790460
求助须知:如何正确求助?哪些是违规求助? 3335150
关于积分的说明 10273529
捐赠科研通 3051578
什么是DOI,文献DOI怎么找? 1674737
邀请新用户注册赠送积分活动 802803
科研通“疑难数据库(出版商)”最低求助积分说明 760907