Robustness of deep autoencoder in intrusion detection under adversarial contamination

自编码 稳健性(进化) 计算机科学 人工智能 对抗制 深度学习 机器学习 入侵检测系统 对抗性机器学习 异常检测 人工神经网络 数据挖掘 模式识别(心理学) 生物化学 基因 化学
作者
Pooria Madani,Natalija Vlajic
标识
DOI:10.1145/3190619.3190637
摘要

The existing state-of-the-art in the field of intrusion detection systems (IDSs) generally involves some use of machine learning algorithms. However, the computer security community is growing increasingly aware that a sophisticated adversary could target the learning module of these IDSs in order to circumvent future detections. Consequently, going forward, robustness of machine-learning based IDSs against adversarial manipulation (i.e., poisoning) will be the key factor for the overall success of these systems in the real world. In our work, we focus on adaptive IDSs that use anomaly-based detection to identify malicious activities in an information system. To be able to evaluate the susceptibility of these IDSs to deliberate adversarial poisoning, we have developed a novel framework for their performance testing under adversarial contamination. We have also studied the viability of using deep autoencoders in the detection of anomalies in adaptive IDSs, as well as their overall robustness against adversarial poisoning. Our experimental results show that our proposed autoencoder-based IDS outperforms a generic PCA-based counterpart by more than 15% in terms of detection accuracy. The obtained results concerning the detection ability of the deep autoencoder IDS under adversarial contamination, compared to that of the PCA-based IDS, are also encouraging, with the deep autoencoder IDS maintaining a more stable detection in parallel to limiting the contamination of its training dataset to just bellow 2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吴所谓完成签到,获得积分10
1秒前
1秒前
慕青应助务实道罡采纳,获得10
2秒前
野猪亨利发布了新的文献求助20
2秒前
2秒前
anmeiii完成签到,获得积分10
3秒前
3秒前
Zirush完成签到,获得积分10
3秒前
XX发布了新的文献求助10
3秒前
3秒前
Yang2完成签到,获得积分10
3秒前
高贵紫丝发布了新的文献求助10
4秒前
4秒前
mingpu发布了新的文献求助10
4秒前
不想看文献完成签到 ,获得积分10
4秒前
BWZ完成签到,获得积分10
4秒前
Lucas应助小刘爱科研采纳,获得10
4秒前
4秒前
谢戴竹发布了新的文献求助10
5秒前
5秒前
5秒前
王王发布了新的文献求助10
5秒前
流氓恐龙发布了新的文献求助10
6秒前
大个应助5High_0采纳,获得10
6秒前
英姑应助负责乐安采纳,获得10
6秒前
核桃应助XQQDD采纳,获得10
6秒前
李健的小迷弟应助马甲采纳,获得10
7秒前
开心易烟发布了新的文献求助10
7秒前
7秒前
8秒前
丘比特应助zzh采纳,获得10
8秒前
9秒前
9秒前
BWZ发布了新的文献求助10
9秒前
抹不掉的记忆完成签到,获得积分10
9秒前
9秒前
小小怪发布了新的文献求助10
10秒前
10秒前
风中傻姑发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4463364
求助须知:如何正确求助?哪些是违规求助? 3926073
关于积分的说明 12183349
捐赠科研通 3578665
什么是DOI,文献DOI怎么找? 1966124
邀请新用户注册赠送积分活动 1004816
科研通“疑难数据库(出版商)”最低求助积分说明 899227