壳聚糖
微观结构
材料科学
化学工程
纳米技术
自愈水凝胶
复合材料
高分子化学
工程类
作者
Jimmy Faivre,Guillaume Sudre,Alexandra Montembault,Stéphane Benayoun,Xavier Banquy,Thierry Delair,Laurent David
出处
期刊:Soft Matter
[Royal Society of Chemistry]
日期:2018-01-01
卷期号:14 (11): 2068-2076
被引量:12
摘要
We describe the fabrication of physical chitosan hydrogels exhibiting a layered structure. This bilayered structure, as shown by SEM and confocal microscopy, is composed of a thin dense superficial zone (SZ), covering a deeper zone (DZ) containing microchannels orientated perpendicularly to the SZ. We show that such structure favors diffusion of macromolecules within the hydrogel matrix up to a critical pressure, σc, above which channels were constricted. Moreover, we found that the SZ provided a higher wear resistance than the DZ which was severely damaged at a pressure equal to the elastic modulus of the gel. The coefficient of friction (CoF) of the SZ remained independent of the applied load with μSZ = 0.38 ± 0.02, while CoF measured at DZ exhibited two regimes: an initial CoF close to the value found on the SZ, and a CoF that decreased to μDZ = 0.18 ± 0.01 at pressures higher than the critical pressure σc. Overall, our results show that internal structuring is a promising avenue in controlling and improving the wear resistance of soft materials such as hydrogels.
科研通智能强力驱动
Strongly Powered by AbleSci AI