计算机科学
人工智能
强化学习
RGB颜色模型
八叉树
计算机视觉
过程(计算)
深度学习
运动规划
机器人
操作系统
作者
Xiangyu Zeng,Tobias Zaenker,Maren Bennewitz
标识
DOI:10.1109/icra46639.2022.9811800
摘要
Automated agricultural applications, i.e., fruit picking require spatial information about crops and, especially, their fruits. In this paper, we present a novel deep reinforcement learning (DRL) approach to determine the next best view for automatic exploration of 3D environments with a robotic arm equipped with an RGB-D camera. We process the obtained images into an octree with labeled regions of interest (ROIs), i.e., fruits. We use this octree to generate 3D observation maps that serve as encoded input to the DRL network. We hereby do not only rely on known information about the environment, but explicitly also represent information about the unknown space to force exploration. Our network takes as input the encoded 3D observation map and the temporal sequence of camera view pose changes, and outputs the most promising camera movement direction. Our experimental results show an improved ROI targeted exploration performance resulting from our learned network in comparison to a state-of-the-art method.
科研通智能强力驱动
Strongly Powered by AbleSci AI