Review of Machine Learning for Hydrodynamics, Transport, and Reactions in Multiphase Flows and Reactors

计算流体力学 多相流 阻力 钥匙(锁) 传热 传质 领域(数学分析) 计算机科学 人工智能 机械 物理 数学 数学分析 计算机安全
作者
Li‐Tao Zhu,Xizhong Chen,Bo Ouyang,Wei‐Cheng Yan,He Lei,Zhe Chen,Zheng‐Hong Luo
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:61 (28): 9901-9949 被引量:144
标识
DOI:10.1021/acs.iecr.2c01036
摘要

Artificial intelligence (AI), machine learning (ML), and data science are leading to a promising transformative paradigm. ML, especially deep learning and physics-informed ML, is a valuable toolkit that complements incomplete domain-specific knowledge in conventional experimental and computational methods. ML can provide flexible techniques to facilitate the conceptual development of new robust predictive models for multiphase flows and reactors by finding hidden pattern/information/mechanism in a data set. Due to such emergence, we thereby comprehensively survey, explore, analyze, and discuss key advancements of recent ML applications to hydrodynamics, heat and mass transfer, and reactions in single-phase and multiphase flow systems from different aspects: (1) development of multiphase closure models of drag force, turbulence stresses and heat/mass transfer to improve the accuracy and efficiency of typical CFD simulations; (2) image reconstruction, regime identification, key parameter predictions, and optimization of multiphase flow and transport fields; (3) reaction kinetics modeling (e.g., predictions of reaction networks, kinetic parameters, and species production) and reaction condition optimization. These sections also discuss and analyze the key advantages and weakness of ML for solving the problems in the domain of multiphase flows and reactors. Finally, we summarize the under-solving challenges and opportunities in order to identify future directions that would be useful for the research community. Future development and study of multiphase flows and reactors are envisaged to be accelerated by ML and data science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助文静灵阳采纳,获得10
1秒前
2秒前
猪猪hero发布了新的文献求助10
3秒前
无限续完成签到,获得积分10
5秒前
昏睡的蟠桃举报刘宇博求助涉嫌违规
5秒前
Owen应助langjidong采纳,获得30
6秒前
小航爱学习完成签到,获得积分10
6秒前
天真醉波完成签到 ,获得积分10
6秒前
冲冲冲啊发布了新的文献求助10
7秒前
xinyue完成签到 ,获得积分10
7秒前
Jasper应助tlggg采纳,获得10
8秒前
tregear完成签到,获得积分10
10秒前
Gu完成签到 ,获得积分10
10秒前
NexusExplorer应助文静灵阳采纳,获得10
11秒前
11秒前
丫丫完成签到,获得积分10
12秒前
小二郎应助小航爱学习采纳,获得10
12秒前
余味应助周心雨采纳,获得10
12秒前
13秒前
羊羊发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
17秒前
17秒前
18秒前
内向绿竹应助ABCDEFG采纳,获得10
18秒前
大胆的迎夏完成签到 ,获得积分10
18秒前
19秒前
材料打工人完成签到 ,获得积分10
19秒前
Pumpkin应助kjh采纳,获得10
20秒前
糊涂涂完成签到,获得积分10
21秒前
自由宛筠发布了新的文献求助10
21秒前
tiger发布了新的文献求助10
22秒前
22秒前
文静灵阳发布了新的文献求助10
22秒前
langjidong发布了新的文献求助30
22秒前
111完成签到,获得积分10
22秒前
纷纷完成签到 ,获得积分10
23秒前
乐乐应助梦醒时见你采纳,获得30
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789592
求助须知:如何正确求助?哪些是违规求助? 3334534
关于积分的说明 10270460
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761