Stabilising Additives for High Nickel Content Sodium-Ion Cathode Inks

材料科学 阴极 锂(药物) 碱金属 化学工程 降级(电信) 电极 粘度 离子 复合材料 冶金 化学 有机化学 电气工程 医学 内分泌学 物理化学 工程类
作者
Samuel Roberts,C.E.J. Dancer,Simon J. Leigh,Mark Simmons,Brij Kishore,Lin Chen,Emma Kendrick
出处
期刊:Meeting abstracts 卷期号:MA2019-04 (10): 0460-0460
标识
DOI:10.1149/ma2019-04/10/0460
摘要

Sodium-ion batteries have the potential to be cheaper alternatives to lithium-ion batteries, mainly due to sourcing the alkali metals; the price of the mineral sources of lithium have increased by more than 15% between 2015-2016 and have continued to rise.[1] Studies of sodium-ion cathodes establish layered nickel based oxides as potential active materials,[2] for which the highest energy density to date has been demonstrated in a full cell configuration (320Wh/L) [3]. However, further investigations have shown a need to modify some of the existing manufacturing methods used for lithium and sodium-ion batteries, due to revealed material instabilities in air.[4] Current layered nickel based oxides are unstable in air and can cause gelation of the binder material, PVDF.[5] It has been shown that the active materials can degrade to produce basic conditions,[6] which leads to a degradation of the PVDF, causing the electrode inks to gel. Therefore low temperatures and a dry atmosphere are required. However, the inks still exhibit poor time stability (see Fig. 1), and variations in the viscosity of the inks appear within minutes of formulation.[7] It is generally deemed that at least 4-5 hrs (or longer) at a stable viscosity is required to coat homogeneously;[8] additives are required to increase the window of stability of the electrode inks. We have investigated and compared a collection of additives that successfully reduce the effects of the instabilities of materials in an electrode ink, in air. These additives reduce the need for drastic changes to the manufacturing methodologies used in lithium ion batteries. Low concentrations (0.1-5 wt%) of additives were added to sodium-ion cathode inks containing layered nickel based oxides as the active material, C65 carbon black as a conductive additive, PVDF as a binding material, and NMP as solvent. A number of measurements were used to verify these interactions. Under controlled conditions, ink shear flow rheology over time was measured, viscosity and stability improvements against ‘standard’ (or non-additive-containing) electrode formulations were observed. Fourier transform infra-red spectroscopy of the electrode inks over time showed enhancements to the stability of the materials in air. Similar observations were noted in the analysis of the physical properties and homogeneity of the electrodes. Furthermore, in a sodium metal half-cell arrangement, the cells demonstrated comparable electrochemical performance to ‘standard’ coatings, with slight changes observable in the first cycles of each additive-containing electrode. [1] M. Á. Muñoz-Márquez, D. Saurel, J. L. Gómez-Cámer, M. Casas-Cabanas, E. Castillo-Martínez, and T. Rojo, “Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation,” Advanced Energy Materials , vol. 7, no. 20. 2017. [2] E. Kendrick et al. , “Tin Containing Compounds,” WO 2015177568 A1, 2015. [3] K. Smith, J. Treacher, D. Ledwoch, P. Adamson, and E. Kendrick, “Novel High Energy Density Sodium Layered Oxide Cathode Materials: From Material to Cells,” ECS Trans. , vol. 75, no. 22, pp. 13–24, 2017. [4] M. H. Han, E. Gonzalo, G. Singh, and T. Rojo, “A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries,” Energy Environ. Sci. , vol. 8, no. 1, pp. 81–102, 2015. [5] M. Biso, R. Colombo, M. Uddin, M. Stanga, and S. Cho, “A Rheological Behavior of Various Polyvinylidene Difluoride Binders for High Capacity LiNi0.6Mn0.2Co0.2O2,” Polym. Eng. Sci. , pp. 6–10, 2016. [6] J. M. Paulsen, H. Park, and Y. H. Kwon, “Process of making cathode material containing Ni-based lithium transition metal oxide,” US8574541B2, 2013. [7] S. Roberts and E. Kendrick, “The re-emergence of sodium ion batteries: testing, processing, and manufacturability,” Nanotechnol. Sci. Appl. , vol. 11, pp. 23–33, 2018. [8] H.-C. Chen et al. , “Electrochemical Na+ storage properties of SnO 2/graphene anodes in carbonate-based and ionic liquid electrolytes,” J. Mater. Chem. A , vol. 5, no. 26, pp. 13776–13784, 2017. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ning发布了新的文献求助10
刚刚
2秒前
3秒前
陈煜完成签到 ,获得积分10
4秒前
5秒前
青树柠檬完成签到 ,获得积分10
5秒前
errui发布了新的文献求助10
6秒前
jidou1011完成签到 ,获得积分10
6秒前
sunny发布了新的文献求助10
8秒前
8秒前
11秒前
RC_Wang应助风夏采纳,获得10
12秒前
烨小冯完成签到,获得积分10
12秒前
13秒前
拉稀摆带发布了新的文献求助10
14秒前
16秒前
专注的映之完成签到,获得积分10
17秒前
老高发布了新的文献求助10
18秒前
爬不起来发布了新的文献求助10
18秒前
18秒前
积极天思完成签到 ,获得积分10
18秒前
20秒前
刻苦的长颈鹿完成签到,获得积分10
21秒前
zxtwins发布了新的文献求助10
24秒前
25秒前
yunxiao完成签到 ,获得积分10
25秒前
25秒前
科研通AI5应助拉稀摆带采纳,获得10
26秒前
科研通AI5应助紫电青霜采纳,获得10
26秒前
27秒前
jenningseastera应助Lei采纳,获得20
28秒前
香蕉觅云应助阳光的宛丝采纳,获得10
29秒前
29秒前
lxr2发布了新的文献求助20
31秒前
31秒前
32秒前
生物kooqx发布了新的文献求助10
32秒前
33秒前
aman完成签到,获得积分10
34秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799882
求助须知:如何正确求助?哪些是违规求助? 3345154
关于积分的说明 10324069
捐赠科研通 3061756
什么是DOI,文献DOI怎么找? 1680519
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462