生命银行
现象
组学
计算生物学
代谢组学
生物
全基因组关联研究
遗传关联
遗传变异
邦费罗尼校正
生物信息学
表型
遗传学
基因型
基因
单核苷酸多态性
统计
数学
作者
Yu Xu,Scott C. Ritchie,Yujian Liang,Paul R. H. J. Timmers,Maik Pietzner,Loïc Lannelongue,Samuel A. Lambert,Usman A. Tahir,Sebastian May-Wilson,Åsa Johansson,Praveen Surendran,Artika P. Nath,Elodie Persyn,James E. Peters,Clare Oliver‐Williams,Shuliang Deng,Bram P. Prins,Carles Foguet,Jian’an Luan,Lorenzo Bomba
标识
DOI:10.1101/2022.04.17.488593
摘要
Abstract Genetically predicted levels of multi-omic traits can uncover the molecular underpinnings of common phenotypes in a highly efficient manner. Here, we utilised a large cohort (INTERVAL; N=50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, N=3,175; Olink, N=4,822), plasma metabolomics (Metabolon HD4, N=8,153), serum metabolomics (Nightingale, N=37,359), and whole blood Illumina RNA sequencing (N=4,136). We used machine learning to train genetic scores for 17,227 molecular traits, including 10,521 which reached Bonferroni-adjusted significance. We evaluated genetic score performances in external validation across European, Asian and African American ancestries, and assessed their longitudinal stability within diverse individuals. We demonstrated the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of UK Biobank to identify disease associations using a phenome-wide scan. Finally, we developed a portal ( OmicsPred.org ) to facilitate public access to all genetic scores and validation results as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.
科研通智能强力驱动
Strongly Powered by AbleSci AI