Aggregation and Adjustment mechanisms for disaster relief task allocation with uneven distribution

计算机科学 任务(项目管理) 网络标志 集合(抽象数据类型) 灾区 分布(数学) 分布式计算 运筹学 数学 物理 数学分析 气象学 经济 管理 程序设计语言
作者
Xinwei Ma,Danli Wang,Nan Zheng,Song Zhang
出处
期刊:Journal of Industrial and Management Optimization [American Institute of Mathematical Sciences]
卷期号:19 (3): 1734-1754
标识
DOI:10.3934/jimo.2022015
摘要

The use of unmanned aerial vehicles (UAVs) to perform disaster relief task is becoming more and more popular. Generally, UAVs for rescuing are required to be heterogeneous, since the types of rescue missions are diverse. There are many researches on the task allocation of heterogeneous UAVs, in which they setup tasks to be randomly distributed when simulation. However, in most cases the distribution of tasks is regular rather than random. Therefore, we setup a set of special scenarios to simulate real disaster relief tasks, where most tasks concentrate in a few small areas and others are distributed randomly. LAL algorithm is an appropriate alternative to deal with assignment problems in scenarios where tasks are completely randomly distributed, but with a bit poor performance in the scenarios above mentioned. In order to obtain better results, this paper proposes three algorithms based on LAL algorithm in such scenarios. They are the Aggregation-LAL (A-LAL) using aggregation mechanism, Dynamic Adjustment-LAL (DA-LAL) using dynamic adjustment mechanism and Aggregation and Adjustment (AA-LAL) algorithms.Through the experiments in the NetLogo simulation environment, the proposed algorithms are evaluated. The result shows improvements, which are average 5% obtained by AA-LAL, of task allocation in our special scenarios compared with existing algorithms. Note: The project funding information is updated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Alexendrial_kai采纳,获得10
刚刚
77完成签到,获得积分10
刚刚
刚刚
玉洁完成签到,获得积分10
1秒前
大雨发布了新的文献求助10
2秒前
1234完成签到,获得积分10
2秒前
坤坤完成签到,获得积分10
2秒前
2秒前
光电效应完成签到,获得积分10
2秒前
科研通AI5应助wangjuan采纳,获得10
2秒前
tdchange完成签到,获得积分10
3秒前
li完成签到,获得积分10
3秒前
程大海完成签到,获得积分10
3秒前
xmj发布了新的文献求助10
3秒前
难过的千山完成签到,获得积分20
3秒前
4秒前
5秒前
1234发布了新的文献求助10
6秒前
自由的山柏完成签到,获得积分10
6秒前
慕青应助wuqi采纳,获得10
6秒前
俏皮的芝麻完成签到,获得积分10
7秒前
7秒前
烟花应助糊涂的谷云采纳,获得10
7秒前
一只小鲨鱼完成签到,获得积分10
7秒前
8秒前
8秒前
在水一方应助Linsey采纳,获得10
8秒前
天天快乐应助丁闯采纳,获得10
8秒前
9秒前
华仔应助倚栏听风采纳,获得10
9秒前
orixero应助大雨采纳,获得10
9秒前
LiT-07发布了新的文献求助10
9秒前
秀xiu完成签到,获得积分10
9秒前
9秒前
10秒前
山外山完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816509
求助须知:如何正确求助?哪些是违规求助? 3359946
关于积分的说明 10406042
捐赠科研通 3078020
什么是DOI,文献DOI怎么找? 1690472
邀请新用户注册赠送积分活动 813786
科研通“疑难数据库(出版商)”最低求助积分说明 767857