亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Chinese Medicine Prescription Recommendation Using Generative Adversarial Network

药方 计算机科学 生成语法 人工智能 人工神经网络 对抗制 隐马尔可夫模型 深度学习 序列(生物学) 机器学习 医学 遗传学 生物 药理学
作者
Xueyan Li,Chuitian Rong,Xuemei Sun,Hong-Jin Sun
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 12219-12228 被引量:5
标识
DOI:10.1109/access.2022.3143797
摘要

The theory of traditional Chinese medicine (TCM) is an important part of Chinese culture. In the long history, there are a large number of excellent prescriptions, whose laws have been explored by many studies, but few works directly studied the generation of prescriptions. With the rapid development of deep learning, many applications of text generation using neural networks have emerged. Prescriptions are the doctors’ clinical experience and the results of neural networks also come from the accumulated experience. So, it is very feasible to apply deep learning techniques to the recommendation on TCM prescriptions. GAN and its variants have been applied in text generation recently. It has advantages in many aspects, such as the rapid speed of computation, the update of parameters by back propagation without Markov chain and more real data generation with two-players game. We attempted to know the important attributes of prescriptions and use these contents as the training data for variants of GAN to generate prescriptions. Specifically, we attempted to apply SeqGAN (Sequence Generative Adversarial Nets) and CGAN (Conditional Generative Adversarial Nets) to prescription generations. By underlying the knowledge of TCM, the prescriptions with different characteristics can be successfully generated. In the experiments, we conducted the comparative evaluations on the original data with other models. The results showed that applications in the innovation of prescription sequence generations have certain feasibility and significance, even can provide some reference values for the innovation of TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
松松完成签到 ,获得积分10
44秒前
可可完成签到 ,获得积分10
48秒前
50秒前
gexzygg应助科研通管家采纳,获得20
51秒前
打打应助LukeLion采纳,获得20
1分钟前
1分钟前
有热心愿意完成签到,获得积分10
1分钟前
1分钟前
LukeLion发布了新的文献求助20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
cllcx完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助50
2分钟前
奈思完成签到 ,获得积分10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
3分钟前
vincy完成签到 ,获得积分0
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
h0jian09完成签到,获得积分10
4分钟前
4分钟前
gexzygg应助科研通管家采纳,获得20
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
Diamond完成签到 ,获得积分10
5分钟前
yzhilson完成签到 ,获得积分0
5分钟前
6分钟前
貔貅完成签到 ,获得积分10
6分钟前
6分钟前
英俊的铭应助木木采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
jinyue完成签到 ,获得积分10
7分钟前
7分钟前
月满西楼完成签到,获得积分10
7分钟前
木木发布了新的文献求助10
7分钟前
7分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4261670
求助须知:如何正确求助?哪些是违规求助? 3794653
关于积分的说明 11899308
捐赠科研通 3441739
什么是DOI,文献DOI怎么找? 1888746
邀请新用户注册赠送积分活动 939502
科研通“疑难数据库(出版商)”最低求助积分说明 844525