Evaluating the Effectiveness of Marketing Campaigns for Malls Using a Novel Interpretable Machine Learning Model

激励 晋升(国际象棋) 营销 业务 竞赛(生物学) 投资(军事) 经济 微观经济学 政治学 生态学 生物 政治 法学
作者
Tong Wang,Cheng He,Fujie Jin,Yu Jeffrey Hu
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:33 (2): 659-677 被引量:16
标识
DOI:10.1287/isre.2021.1078
摘要

We develop a novel interpretable machine learning model, GANNM, and use newly available data to evaluate how different types of marketing campaigns and budget allocations influence malls’ customer traffic. We observe that the response curves that measure the impact of campaign budget on customer traffic differ for different categories of campaigns, with sales incentives or experience incentives, during peak periods, off-peak periods, or online promotion periods. Based on such accurate response curves from GANNM, the optimized budget allocation is estimated to yield a 11.2% increase in customer traffic compared with the original allocation. Our findings provide novel insights on managing mall campaigns. Mall managers should increase marketing spending to areas that were likely overlooked before and avoid over-crowding budget to campaigns during times with high levels of competition and are likely already over-marketed. We provide empirical evidence showing that the recent trend of employing novel approaches for enhancing customer experience in physical stores can effectively encourage customers to visit malls. Furthermore, we show that online promotions could also create opportunities for offline businesses—investing in campaigns in the major online promotion periods could significantly increase customer traffic for malls, given sufficient investment in the campaigns to raise customer awareness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没时间解释了完成签到 ,获得积分10
1秒前
2秒前
yeggoo发布了新的文献求助10
3秒前
Oliver发布了新的文献求助10
6秒前
天天快乐应助俭朴尔竹采纳,获得10
7秒前
hhh发布了新的文献求助30
8秒前
随鸡昵称完成签到,获得积分20
12秒前
16秒前
yeggoo完成签到,获得积分10
16秒前
cm完成签到,获得积分10
17秒前
Xiaopei发布了新的文献求助10
20秒前
xdc发布了新的文献求助10
21秒前
科研通AI6应助漱玉采纳,获得30
22秒前
24秒前
Maria完成签到,获得积分10
24秒前
25秒前
Xiaopei完成签到,获得积分10
25秒前
阿甘发布了新的文献求助10
26秒前
研友_VZG7GZ应助刘振扬采纳,获得10
27秒前
28秒前
白菜发布了新的文献求助10
29秒前
30秒前
牛人完成签到,获得积分0
31秒前
熙熙攘攘完成签到,获得积分10
31秒前
lyp完成签到 ,获得积分10
32秒前
Ryuki完成签到 ,获得积分10
32秒前
馆长应助积极的奇异果采纳,获得30
33秒前
33秒前
锦2022发布了新的文献求助10
33秒前
柚子蟹完成签到,获得积分10
36秒前
熙熙攘攘发布了新的文献求助10
37秒前
刘振扬发布了新的文献求助10
38秒前
白菜完成签到,获得积分10
38秒前
细心的飞柏完成签到,获得积分10
38秒前
39秒前
小蘑菇应助spz150采纳,获得10
41秒前
41秒前
41秒前
小白应助科研通管家采纳,获得10
41秒前
科研通AI6应助科研通管家采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A study of torsion fracture tests 510
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4757048
求助须知:如何正确求助?哪些是违规求助? 4099808
关于积分的说明 12685242
捐赠科研通 3814192
什么是DOI,文献DOI怎么找? 2105653
邀请新用户注册赠送积分活动 1130450
关于科研通互助平台的介绍 1008556