Deep Learning–Based Inspection Data Mining and Derived Information Fusion for Enhanced Bridge Deterioration Assessment

桥(图论) 数据挖掘 计算机科学 传感器融合 分割 人工智能 模糊逻辑 结构健康监测 推论 工程类 结构工程 医学 内科学
作者
Pengyong Miao,Guohua Xing,Shengchi Ma,Teeranai Srimahachota
出处
期刊:Journal of Bridge Engineering [American Society of Civil Engineers]
卷期号:28 (8) 被引量:3
标识
DOI:10.1061/jbenf2.beeng-6053
摘要

Inspection data are usually utilized to assess bridge situations for directing further maintenance and preservation. However, due to the complexity of inspection data, mining and fusing valuable information to assess bridge situations remains challenging. To address these issues, a novel inspection data analysis framework was proposed in this study. The framework integrated a gated recursive unit (GRU) model, a semantic segmentation (Seg) model, and a Yolo V4 object detector to analyze both time-series data and images. Seg and Yolo were used to detect defective pixels, which were then evaluated using refined fuzzy inference systems (RFISs) to determine the deterioration grade. The GRU and RFIS models were employed used to infer the probability of bridge deterioration grades. These probabilities were then fused by the novel fusion technique to determine the final deterioration grade. A verification showed GRU, Seg, and Yolo detectors to have 0.9299, 0.9580, and 0.7967 accuracy values for analyzing time-series data and images, respectively. RFISs also performed well in determining concrete and steel deterioration grades with R-values of 0.9968 and 0.9962. Compared with Dempster–Shafer and its two variants, the proposed fusion technique improved the accuracy rates by 11.65%, 2.19%, and 3.38%, respectively. Prototype models also demonstrated abilities to clearly understand deterioration grades and the spatial relationship of defects. Overall, the proposed method could sufficiently mine inspection data and more reasonably assess bridge situations.Practical ApplicationsThe practical application of this study lies in the fact that it presents a framework for thoroughly mining bridge inspection data, including time-series data and member surface images, to improve deterioration assessments. Combining the gated recurrent unit, you only look once (Yolo) V4 detector, convolutional semantic segmentation (Seg) model, refined fuzzy inference systems, and a novel information fusion technique, the framework provides a powerful solution for mining and integrating information to determine a reasonable deterioration grade, outperforming Dempster–Shafer and its variants. In addition, this study includes 3D prototype models of real bridges to showcase the deterioration situations of bridge components and help understand defect spatial relationships. In practice, once the inspection records are obtained, the programming code can automatically process them to determine the final deterioration grade and visualize the results in 3D mode. This is of great significance in ensuring the longevity, safety, and functionality of a bridge, because the inspection records are difficult to be processed manually over the long operation and maintenance period.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
崖涯完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
向来缘浅完成签到 ,获得积分10
2秒前
aaaaaa完成签到,获得积分10
2秒前
洁净的闭月完成签到,获得积分10
3秒前
小土豆完成签到,获得积分10
3秒前
花卷完成签到,获得积分10
4秒前
我就是唐僧同事完成签到 ,获得积分10
4秒前
张一完成签到,获得积分10
4秒前
不发一区不改名完成签到 ,获得积分10
4秒前
luan完成签到 ,获得积分10
5秒前
jason完成签到,获得积分10
7秒前
桥豆麻袋完成签到,获得积分10
7秒前
ShengQ完成签到,获得积分10
9秒前
Behappy完成签到 ,获得积分10
9秒前
等待的代容完成签到,获得积分10
10秒前
moyeon完成签到,获得积分10
11秒前
铑氟钌发少年狂完成签到,获得积分10
11秒前
研友_LMpo68完成签到 ,获得积分0
11秒前
没头脑和不高兴完成签到,获得积分10
13秒前
hx完成签到 ,获得积分10
13秒前
Li发布了新的文献求助10
13秒前
yqt完成签到,获得积分20
14秒前
虞无声完成签到,获得积分10
15秒前
平头哥哥完成签到 ,获得积分10
15秒前
caoyulongchn完成签到,获得积分10
16秒前
ye完成签到 ,获得积分10
17秒前
Chong完成签到,获得积分10
18秒前
激情的含巧完成签到,获得积分10
18秒前
Ryan完成签到,获得积分0
20秒前
duoduozs完成签到,获得积分10
21秒前
right完成签到 ,获得积分10
22秒前
星星包完成签到 ,获得积分10
22秒前
是多少应助是我呀吼采纳,获得20
22秒前
王欣瑶完成签到 ,获得积分10
22秒前
小小完成签到,获得积分10
23秒前
zhangxinan完成签到,获得积分10
23秒前
gj2221423完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
不来也不去完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079744
求助须知:如何正确求助?哪些是违规求助? 4297883
关于积分的说明 13389008
捐赠科研通 4121176
什么是DOI,文献DOI怎么找? 2257046
邀请新用户注册赠送积分活动 1261338
关于科研通互助平台的介绍 1195430