亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interfacial Colloidal Self-Assembly for Functional Materials

纳米技术 材料科学 纳米颗粒 单层 石墨烯 拉曼散射 生物传感器 碳纳米管 自组装 胶体金 拉曼光谱 光学 物理
作者
Shuai Hou,Ling Bai,Derong Lu,Hongwei Duan
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (7): 740-751 被引量:42
标识
DOI:10.1021/acs.accounts.2c00705
摘要

ConspectusSelf-assembly bridges nanoscale and microscale colloidal particles into macroscale functional materials. In particular, self-assembly processes occurring at the liquid/liquid or solid/liquid/air interfaces hold great promise in constructing large-scale two- or three-dimensional (2D or 3D) architectures. Interaction of colloidal particles in the assemblies leads to emergent collective properties not found in individual building blocks, offering a much larger parameter space to tune the material properties. Interfacial self-assembly methods are rapid, cost-effective, scalable, and compatible with existing fabrication technologies, thus promoting widespread interest in a broad range of research fields.Surface chemistry of nanoparticles plays a predominant role in driving the self-assembly of nanoparticles at water/oil interfaces. Amphiphilic nanoparticles coated with mixed polymer brushes or mussel-inspired polydopamine were demonstrated to self-assemble into closely packed thin films, enabling diverse applications from electrochemical sensors and catalysis to surface-enhanced optical properties. Interfacial assemblies of amphiphilic gold nanoparticles were integrated with graphene paper to obtain flexible electrodes in a modular approach. The robust, biocompatible electrodes with exceptional electrocatalytic activities showed excellent sensitivity and reproducibility in biosensing. Recyclable catalysts were prepared by transferring monolayer assemblies of polydopamine-coated nanocatalysts to both hydrophilic and hydrophobic substrates. The immobilized catalysts were easily recovered and recycled without loss of catalytic activity. Plasmonic nanoparticles were self-assembled into a plasmonic substrate for surface-enhanced Raman scattering, metal-enhanced fluorescence, and modulated fluorescence resonance energy transfer (FRET). Strong Raman enhancement was accomplished by rationally directing the Raman probes to the electromagnetic hotspots. Optimal enhancement of fluorescence and FRET was realized by precisely controlling the spacing between the metal surface and the fluorophores and tuning the surface plasmon resonance wavelength of the self-assembled substrate to match the optical properties of the fluorescent dye.At liquid/solid interfaces, infiltration-assisted (IFAST) colloidal self-assembly introduces liquid infiltration in the substrate as a new factor to control the degree of order of the colloidal assemblies. The strong infiltration flow leads to the formation of amorphous colloidal arrays that display noniridescent structural colors. This method is compatible with a broad range of colloidal particle inks, and any solid substrate that is permeable to dispersing liquids but particle-excluding is suitable for IFAST colloidal assembly. Therefore, the IFAST technology offers rapid, scalable fabrication of structural color patterns of diverse colloidal particles with full-spectrum coverage and unprecedented flexibility. Metal-organic framework particles with either spherical or polyhedral morphology were used as ink particles in the Mayer rod coating on wettability patterned photopapers, leading to amorphous photonic structures with vapor-responsive colors. Anticounterfeiting labels have also been developed based on the complex optical features encoded in the photonic structures.Interfacial colloidal self-assembly at the water/oil interface and IFAST assembly at the solid/liquid/air interface have proven to be versatile fabrication platforms to produce functional materials with well-defined properties for diverse applications. These platform technologies are promising in the manufacturing of value-added functional materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
25秒前
所所应助ygl0217采纳,获得10
35秒前
40秒前
41秒前
ygl0217发布了新的文献求助10
47秒前
47秒前
ceeray23发布了新的文献求助20
53秒前
隐形曼青应助ygl0217采纳,获得10
53秒前
56秒前
灵波应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得30
1分钟前
馆长举报奶酪包求助涉嫌违规
1分钟前
平常以云完成签到 ,获得积分10
1分钟前
Sylvia关注了科研通微信公众号
1分钟前
Bin完成签到,获得积分10
1分钟前
1分钟前
ygl0217发布了新的文献求助10
2分钟前
灵巧的以亦完成签到 ,获得积分10
2分钟前
馆长举报Zachary求助涉嫌违规
2分钟前
Sylvia发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
健壮的翎完成签到,获得积分10
3分钟前
馆长举报Masetti1求助涉嫌违规
3分钟前
量子星尘发布了新的文献求助10
3分钟前
ttxxcdx完成签到 ,获得积分10
4分钟前
4分钟前
祥子发布了新的文献求助10
4分钟前
4分钟前
HYQ完成签到 ,获得积分10
4分钟前
Jasper应助OCDer采纳,获得10
4分钟前
4分钟前
OCDer完成签到,获得积分0
4分钟前
4分钟前
OCDer发布了新的文献求助10
4分钟前
5分钟前
zm完成签到 ,获得积分10
5分钟前
热情的橙汁完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4834409
求助须知:如何正确求助?哪些是违规求助? 4138281
关于积分的说明 12808243
捐赠科研通 3882014
什么是DOI,文献DOI怎么找? 2134977
邀请新用户注册赠送积分活动 1155023
关于科研通互助平台的介绍 1054202