清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Interfacial Colloidal Self-Assembly for Functional Materials

纳米技术 材料科学 纳米颗粒 单层 石墨烯 拉曼散射 生物传感器 碳纳米管 自组装 胶体金 拉曼光谱 物理 光学
作者
Shuai Hou,Ling Bai,Derong Lu,Hongwei Duan
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (7): 740-751 被引量:9
标识
DOI:10.1021/acs.accounts.2c00705
摘要

ConspectusSelf-assembly bridges nanoscale and microscale colloidal particles into macroscale functional materials. In particular, self-assembly processes occurring at the liquid/liquid or solid/liquid/air interfaces hold great promise in constructing large-scale two- or three-dimensional (2D or 3D) architectures. Interaction of colloidal particles in the assemblies leads to emergent collective properties not found in individual building blocks, offering a much larger parameter space to tune the material properties. Interfacial self-assembly methods are rapid, cost-effective, scalable, and compatible with existing fabrication technologies, thus promoting widespread interest in a broad range of research fields.Surface chemistry of nanoparticles plays a predominant role in driving the self-assembly of nanoparticles at water/oil interfaces. Amphiphilic nanoparticles coated with mixed polymer brushes or mussel-inspired polydopamine were demonstrated to self-assemble into closely packed thin films, enabling diverse applications from electrochemical sensors and catalysis to surface-enhanced optical properties. Interfacial assemblies of amphiphilic gold nanoparticles were integrated with graphene paper to obtain flexible electrodes in a modular approach. The robust, biocompatible electrodes with exceptional electrocatalytic activities showed excellent sensitivity and reproducibility in biosensing. Recyclable catalysts were prepared by transferring monolayer assemblies of polydopamine-coated nanocatalysts to both hydrophilic and hydrophobic substrates. The immobilized catalysts were easily recovered and recycled without loss of catalytic activity. Plasmonic nanoparticles were self-assembled into a plasmonic substrate for surface-enhanced Raman scattering, metal-enhanced fluorescence, and modulated fluorescence resonance energy transfer (FRET). Strong Raman enhancement was accomplished by rationally directing the Raman probes to the electromagnetic hotspots. Optimal enhancement of fluorescence and FRET was realized by precisely controlling the spacing between the metal surface and the fluorophores and tuning the surface plasmon resonance wavelength of the self-assembled substrate to match the optical properties of the fluorescent dye.At liquid/solid interfaces, infiltration-assisted (IFAST) colloidal self-assembly introduces liquid infiltration in the substrate as a new factor to control the degree of order of the colloidal assemblies. The strong infiltration flow leads to the formation of amorphous colloidal arrays that display noniridescent structural colors. This method is compatible with a broad range of colloidal particle inks, and any solid substrate that is permeable to dispersing liquids but particle-excluding is suitable for IFAST colloidal assembly. Therefore, the IFAST technology offers rapid, scalable fabrication of structural color patterns of diverse colloidal particles with full-spectrum coverage and unprecedented flexibility. Metal-organic framework particles with either spherical or polyhedral morphology were used as ink particles in the Mayer rod coating on wettability patterned photopapers, leading to amorphous photonic structures with vapor-responsive colors. Anticounterfeiting labels have also been developed based on the complex optical features encoded in the photonic structures.Interfacial colloidal self-assembly at the water/oil interface and IFAST assembly at the solid/liquid/air interface have proven to be versatile fabrication platforms to produce functional materials with well-defined properties for diverse applications. These platform technologies are promising in the manufacturing of value-added functional materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenbo完成签到,获得积分10
6秒前
嬗变的天秤完成签到,获得积分10
13秒前
红茸茸羊完成签到 ,获得积分10
25秒前
研友_Z1eDgZ完成签到,获得积分10
50秒前
小李完成签到 ,获得积分10
1分钟前
伍敏完成签到 ,获得积分10
1分钟前
冥道残月破完成签到 ,获得积分10
1分钟前
张丫丫完成签到,获得积分10
1分钟前
科研通AI2S应助jlwang采纳,获得10
1分钟前
mingtian完成签到,获得积分10
1分钟前
看看文章完成签到 ,获得积分10
2分钟前
精壮小伙完成签到,获得积分0
2分钟前
秋夜临完成签到,获得积分10
2分钟前
契合发布了新的文献求助30
2分钟前
木可完成签到,获得积分10
3分钟前
福尔摩曦完成签到,获得积分10
3分钟前
X519664508完成签到,获得积分0
3分钟前
小红书求接接接接一篇完成签到,获得积分10
3分钟前
hmhu完成签到,获得积分10
3分钟前
沉沉完成签到 ,获得积分0
3分钟前
hmhu发布了新的文献求助10
3分钟前
贝贝完成签到,获得积分0
4分钟前
4分钟前
Tong完成签到,获得积分0
4分钟前
shikaly完成签到,获得积分0
4分钟前
妄语发布了新的文献求助10
4分钟前
Wang发布了新的文献求助10
4分钟前
Wang完成签到,获得积分10
4分钟前
墨水完成签到 ,获得积分10
4分钟前
研友_shuang完成签到,获得积分0
4分钟前
5分钟前
Dream完成签到,获得积分10
5分钟前
白白嫩嫩完成签到,获得积分10
5分钟前
巫巫巫巫巫完成签到 ,获得积分10
6分钟前
ssl完成签到 ,获得积分10
6分钟前
6分钟前
艾比西地完成签到 ,获得积分10
6分钟前
WILSON发布了新的文献求助10
6分钟前
堇笙vv完成签到,获得积分0
6分钟前
jlwang完成签到,获得积分10
6分钟前
高分求助中
A pan-cancer cuproptosis signature predicting immunotherapy response and prognosis 1500
Straight Talk about ADHD in Girls: How to Help Your Daughter Thrive 1100
Lorenz Luthi - The Regional Cold Wars in Europe, East Asia, and the Middle East Crucial Periods and Turning Points 1000
Models of Teaching(The 10th Edition,第10版!)《教学模式》(第10版!) 800
Full waveform acoustic data processing 500
More Activities for Teaching Positive Psychology A Guide for Instructors 330
The Chicago Manual of Style, 18th Edition 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2887826
求助须知:如何正确求助?哪些是违规求助? 2507827
关于积分的说明 6789567
捐赠科研通 2183623
什么是DOI,文献DOI怎么找? 1160831
版权声明 586630
科研通“疑难数据库(出版商)”最低求助积分说明 569371