Can radiomic features extracted from intra‐oral radiographs predict physiological bone remodelling around dental implants? A hypothesis‐generating study

医学 植入 射线照相术 预测值 多元统计 多元分析 牙科 生物医学工程 计算机科学 机器学习 放射科 外科 内科学
作者
Giuseppe Troiano,Francesco Fanelli,Antonio Rapani,Matteo Zotti,Teresa Lombardi,Khrystyna Zhurakivska,Claudio Stacchi
出处
期刊:Journal of Clinical Periodontology [Wiley]
卷期号:50 (7): 932-941 被引量:4
标识
DOI:10.1111/jcpe.13797
摘要

The rate of physiological bone remodelling (PBR) occurring after implant placement has been associated with the later onset of progressive bone loss and peri-implantitis, leading to medium- and long-term implant therapy failure. It is still questionable, however, whether PBR is associated with specific bone characteristics. The aim of this study was to assess whether radiomic analysis could reveal not readily appreciable bone features useful for the prediction of PBR.Radiomic features were extracted from the radiographs taken at implant placement (T0) using LifeX software. Because of the multi-centre design of the source study, ComBat harmonization was applied to the cohort. Different machine-learning models were trained on selected radiomic features to develop and internally validate algorithms capable of predicting high PBR. In addition, results of the algorithm were included in a multivariate analysis with other clinical variables (tissue thickness and depth of implant position) to test their independent correlation with PBR.Specific radiomic features extracted at T0 are associated with higher PBR around tissue-level implants after 3 months of unsubmerged healing (T1). In addition, taking advantage of machine-learning methods, a naive Bayes model was trained using radiomic features selected by fast correlation-based filter (FCBF), which showed the best performance in the prediction of PBR (AUC = 0.751, sensitivity = 66.0%, specificity = 68.4%, positive predictive value = 73.3%, negative predictive value = 60.5%). In addition, results of the whole model were included in a multivariate analysis with tissue thickness and depth of implant position, which were still found to be independently associated with PBR (p-value < .01).The combination of radiomics and machine-learning methods seems to be a promising approach for the early prediction of PBR. Such an innovative approach could be also used for the study of not readily disclosed bone characteristics, thus helping to explain not fully understood clinical phenomena. Although promising, the performance of the radiomic model should be improved in terms of specificity and sensitivity by further studies in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hsadu发布了新的文献求助10
1秒前
1秒前
123发布了新的文献求助30
1秒前
高大楼房发布了新的文献求助10
2秒前
平淡的洪纲完成签到,获得积分10
3秒前
3秒前
cis2014发布了新的文献求助150
3秒前
4秒前
摘星012完成签到,获得积分10
4秒前
思源应助TANG采纳,获得10
5秒前
5秒前
Lucas应助晶晶采纳,获得10
5秒前
5秒前
上官若男应助Chemvenus采纳,获得10
6秒前
7秒前
寒酥关注了科研通微信公众号
7秒前
8秒前
8秒前
8R60d8应助Dai采纳,获得10
8秒前
金金发布了新的文献求助10
10秒前
达布溜发布了新的文献求助10
10秒前
思思完成签到,获得积分10
11秒前
water应助沉默的凝荷采纳,获得10
11秒前
11秒前
NexusExplorer应助陈越采纳,获得10
12秒前
难过谷丝完成签到,获得积分20
13秒前
14秒前
15秒前
15秒前
未若柳絮因风起完成签到,获得积分10
15秒前
文献自由发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
和谐钧完成签到,获得积分10
17秒前
简默发布了新的文献求助10
18秒前
19秒前
顾矜应助邢文瑞采纳,获得10
19秒前
生生发布了新的文献求助10
20秒前
王十二发布了新的文献求助10
20秒前
21秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871187
求助须知:如何正确求助?哪些是违规求助? 3413299
关于积分的说明 10683969
捐赠科研通 3137766
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834643
科研通“疑难数据库(出版商)”最低求助积分说明 781250