Radiomics Analysis of Lymph Nodes with Esophageal Squamous Cell Carcinoma Based on Deep Learning

医学 无线电技术 接收机工作特性 人工智能 Lasso(编程语言) 食管鳞状细胞癌 深度学习 淋巴结 放射科 淋巴结转移 阿达布思 支持向量机 淋巴 机器学习 转移 病理 计算机科学 癌症 内科学 万维网
作者
Li Chen,Yi Ouyang,Shuang Liu,Jie Lin,Changhuan Chen,Chengchao Zheng,Jianbo Lin,Zhijian Hu,Moliang Qiu
出处
期刊:Journal of Oncology [Hindawi Publishing Corporation]
卷期号:2022: 1-11 被引量:1
标识
DOI:10.1155/2022/8534262
摘要

Purpose. To assess the role of multiple radiomic features of lymph nodes in the preoperative prediction of lymph node metastasis (LNM) in patients with esophageal squamous cell carcinoma (ESCC). Methods. Three hundred eight patients with pathologically confirmed ESCC were retrospectively enrolled (training cohort, n = 216; test cohort, n = 92). We extracted 207 handcrafted radiomic features and 1000 deep radiomic features of lymph nodes from their computed tomography (CT) images. The t-test and least absolute shrinkage and selection operator (LASSO) were used to reduce the dimensions and select key features. Handcrafted radiomics, deep radiomics, and clinical features were combined to construct models. Models I (handcrafted radiomic features), II (Model I plus deep radiomic features), and III (Model II plus clinical features) were built using three machine learning methods: support vector machine (SVM), adaptive boosting (AdaBoost), and random forest (RF). The best model was compared with the results of two radiologists, and its performance was evaluated in terms of sensitivity, specificity, accuracy, area under the curve (AUC), and receiver operating characteristic (ROC) curve analysis. Results. No significant differences were observed between cohorts. Ten handcrafted and 12 deep radiomic features were selected from the extracted features ( p < 0.05 ). Model III could discriminate between patients with and without LNM better than the diagnostic results of the two radiologists. Conclusion. The combination of handcrafted radiomic features, deep radiomic features, and clinical features could be used clinically to assess lymph node status in patients with ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助云瑾采纳,获得10
刚刚
刚刚
危机的囧完成签到,获得积分10
1秒前
yunlu完成签到,获得积分10
1秒前
2秒前
jijahui完成签到,获得积分20
3秒前
青春无敌小阿海完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
6秒前
7秒前
汤汤圆圆完成签到,获得积分20
7秒前
7秒前
哈哈哈哈哈完成签到,获得积分10
8秒前
8秒前
8秒前
一只耳完成签到,获得积分10
9秒前
Orange应助Ttimer采纳,获得10
9秒前
79发布了新的文献求助10
9秒前
研友_VZG7GZ应助阿毛采纳,获得10
10秒前
友好钢笔发布了新的文献求助10
10秒前
马里奥尝food完成签到,获得积分10
12秒前
12秒前
12秒前
123完成签到,获得积分10
12秒前
13秒前
Anna发布了新的文献求助30
13秒前
14秒前
红李子发布了新的文献求助10
14秒前
友好钢笔完成签到,获得积分10
15秒前
15秒前
18秒前
18秒前
小熊发布了新的文献求助10
18秒前
mll发布了新的文献求助10
19秒前
Owen应助lu采纳,获得10
19秒前
19秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4383271
求助须知:如何正确求助?哪些是违规求助? 3877031
关于积分的说明 12077130
捐赠科研通 3520203
什么是DOI,文献DOI怎么找? 1931923
邀请新用户注册赠送积分活动 973264
科研通“疑难数据库(出版商)”最低求助积分说明 871542