The Double Contrast for Unsupervised Person Re-Identification

计算机科学 特征(语言学) 模式识别(心理学) 特征向量 对比度(视觉) 星团(航天器) 聚类分析 人工智能 支持向量机 一致性(知识库) 鉴定(生物学) 数据挖掘 植物 生物 哲学 语言学 程序设计语言
作者
Daocheng Liu,Yanyun Fu,Wenxi Shi,Zhansheng Zhu,Deyong Wang
标识
DOI:10.1145/3653804.3656279
摘要

At present, the most popular unsupervised person re-identification(Re-ID) research mainly uses some clustering methods to gather samples with similar features and generate a pseudo-label for each cluster, and uses the parameterless contrast loss to feedback correlation information between features.Many previous methods used the memory dictionary to store all instance-dependent features, but This approach does not take into account the different number of positive samples in each cluster, and the progress of each cluster update of the memory dictionary is not the same.In order to improve the consistency of the update progress, a method is implemented to store the central feature vector in each cluster, but using a hard-sample feature vector in the cluster to update it, so that a single instance feature cannot represent the central feature well. In this article, we study out a method to combine hard instance contrast and cluster contrast, that is, the central feature vector in each cluster is stored in the memory dictionary, and the hard instance feature vector in each cluster is also stored there.In addition, in terms of momentum update, the central feature vector and hard instance feature vector of each cluster in mini-batch are used for update.This not only solves the problem of inconsistent update progress, but also better learns the similarity and difference of instances in the same cluster, and better aggregates instances within cluster and instances between clusters. Through three dataset experiments, it is concluded that this method has a good improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaowang完成签到,获得积分10
2秒前
2秒前
彭于晏应助xin采纳,获得10
3秒前
3秒前
杜du完成签到 ,获得积分10
5秒前
5秒前
坚强的严青完成签到,获得积分20
5秒前
jqliu发布了新的文献求助10
8秒前
9秒前
13秒前
Yu-Hang Li完成签到,获得积分10
13秒前
Bella完成签到,获得积分20
14秒前
寻桃阿玉完成签到 ,获得积分10
15秒前
xiaozhao完成签到,获得积分10
20秒前
酷波er应助τ涛采纳,获得10
20秒前
21秒前
笨笨芯举报eternal_dreams求助涉嫌违规
21秒前
ZZzz完成签到 ,获得积分10
24秒前
wendinfgmei发布了新的文献求助10
26秒前
孤海未蓝完成签到,获得积分10
26秒前
整齐的夏之完成签到,获得积分10
26秒前
26秒前
27秒前
Sephirex发布了新的文献求助30
28秒前
caohuijun发布了新的文献求助10
30秒前
35秒前
田様应助小王爱学习采纳,获得10
37秒前
τ涛发布了新的文献求助10
40秒前
蜂蜜完成签到,获得积分10
42秒前
xiaoyiyaxin完成签到 ,获得积分10
42秒前
烟花应助科研通管家采纳,获得10
44秒前
ding应助科研通管家采纳,获得10
44秒前
科研通AI5应助科研通管家采纳,获得20
44秒前
44秒前
44秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
Hello应助科研通管家采纳,获得10
44秒前
45秒前
45秒前
高挑的寒松完成签到,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776445
求助须知:如何正确求助?哪些是违规求助? 3321879
关于积分的说明 10208141
捐赠科研通 3037221
什么是DOI,文献DOI怎么找? 1666605
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872