Systematic Review of Prognosis Models in Predicting Tooth Loss in Periodontitis

牙周炎 牙缺失 检查表 过度拟合 医学 统计的 梅德林 数据提取 混淆 预测建模 牙科 统计 计算机科学 机器学习 数学 心理学 内科学 口腔健康 人工神经网络 政治学 法学 认知心理学
作者
Dian Yi Chow,John Rong Hao Tay,Gustavo G. Nascimento
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:103 (6): 596-604 被引量:6
标识
DOI:10.1177/00220345241237448
摘要

This study reviews and appraises the methodological and reporting quality of prediction models for tooth loss in periodontitis patients, including the use of regression and machine learning models. Studies involving prediction modeling for tooth loss in periodontitis patients were screened. A search was performed in MEDLINE via PubMed, Embase, and CENTRAL up to 12 February 2022, with citation chasing. Studies exploring model development or external validation studies for models assessing tooth loss in periodontitis patients for clinical use at any time point, with all prediction horizons in English, were considered. Studies were excluded if models were not developed for use in periodontitis patients, were not developed or validated on any data set, predicted outcomes other than tooth loss, or were prognostic factor studies. The CHARMS checklist was used for data extraction, TRIPOD to assess reporting quality, and PROBAST to assess the risk of bias. In total, 4,661 records were screened, and 45 studies were included. Only 26 studies reported any kind of performance measure. The median C-statistic reported was 0.671 (range, 0.57-0.97). All studies were at a high risk of bias due to inappropriate handling of missing data (96%), inappropriate evaluation of model performance (92%), and lack of accounting for model overfitting in evaluating model performance (68%). Many models predicting tooth loss in periodontitis are available, but studies evaluating these models are at a high risk of bias. Model performance measures are likely to be overly optimistic and might not be replicated in clinical use. While this review is unable to recommend any model for clinical practice, it has collated the existing models and their model performance at external validation and their associated sample sizes, which would be helpful to identify promising models for future external validation studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
4秒前
纯真盛男完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
佳琳子完成签到,获得积分10
5秒前
田様应助CC采纳,获得10
6秒前
自然耳机完成签到,获得积分10
6秒前
6秒前
yj完成签到,获得积分10
6秒前
立敌发布了新的文献求助10
7秒前
田様应助PXY采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助酷炫的忆山采纳,获得10
8秒前
询鲤发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
RR发布了新的文献求助30
11秒前
文竹发布了新的文献求助10
11秒前
zzz应助张nnnn采纳,获得10
12秒前
Jasper应助张nnnn采纳,获得10
12秒前
13秒前
13秒前
15秒前
16秒前
轻松的芯完成签到 ,获得积分0
16秒前
聪慧小霜应助R语言采纳,获得10
17秒前
千山暮雪完成签到 ,获得积分10
19秒前
善学以致用应助平平采纳,获得10
20秒前
CC发布了新的文献求助10
21秒前
搜集达人应助沉静的曼荷采纳,获得10
21秒前
21秒前
JamesPei应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4313574
求助须知:如何正确求助?哪些是违规求助? 3833325
关于积分的说明 11992565
捐赠科研通 3473366
什么是DOI,文献DOI怎么找? 1904711
邀请新用户注册赠送积分活动 951534
科研通“疑难数据库(出版商)”最低求助积分说明 853101