Protein dynamics inform protein structure: An interdisciplinary investigation of protein crystallization propensity

蛋白质结晶 蛋白质动力学 蛋白质结构 结晶 化学 计算生物学 生物 生物化学 有机化学
作者
Mohammad Madani,Anna Tarakanova
出处
期刊:Matter [Elsevier BV]
卷期号:7 (9): 2978-2995
标识
DOI:10.1016/j.matt.2024.04.023
摘要

Progress and potentialIn this study, we explicitly resolve protein dynamics to capture the critical determinants of protein crystallization propensity through an interpretable attention-based graph neural network model. We show here that proteins must be considered as dynamic moieties and that this essential attribute plays a pivotal role in resolving their crystallization propensity. This is the first work to use structural dynamics features for crystallization propensity prediction. We introduce DSDCrystal, a new toolbox for protein crystal quality prediction, encoded directly with protein dynamics as key input features. Our predictive tools may enable the rational design of protein sequences that result in a diffraction-quality crystal by considering comprehensive biological mechanisms. This framework expands the classical paradigm of structural biology and establishes a roadmap for layered and intuitive control for functional protein design.Highlights•Framework merges physics and ML to predict crystallization propensity via protein dynamics•An interpretable protein crystallization propensity predictor validated by MD simulation•New insights into how dynamics influence protein structure characterizationSummaryThe classical central paradigm of structural biology links a protein's sequence to its structure and function but overlooks conformational fluctuation that is integral to protein function. We propose a graph neural network model based on gated attention that explicitly incorporates protein dynamics via physics-based models to predict protein crystallization propensity. We compare results to all-atom molecular dynamics simulations of flexible, disordered human tropoelastin and ordered, globular human lysyl oxidase-like protein. Our findings show that fluctuating residues correlate with locally maximal attention scores in the neural network. By methodically truncating the sequences, we establish correlations between dynamical and physicochemical molecular properties and protein crystallization propensity. Accounting for comprehensive biological mechanisms, our tool can facilitate the rational design of protein sequences that lead to diffraction-quality crystals. Our study showcases the integration of physics-based and machine learning models for structure and property prediction, expanding the classical paradigm of structural biology.Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适醉蝶完成签到 ,获得积分10
刚刚
i2stay完成签到,获得积分10
3秒前
Bronya完成签到 ,获得积分10
16秒前
22秒前
diraczh完成签到,获得积分10
24秒前
26秒前
dudu完成签到 ,获得积分10
27秒前
gwp1223发布了新的文献求助10
32秒前
略略略完成签到 ,获得积分10
35秒前
汉堡包应助秀丽的友卉采纳,获得10
38秒前
培培完成签到 ,获得积分10
43秒前
keleboys完成签到 ,获得积分10
45秒前
46秒前
落寞代桃完成签到 ,获得积分10
47秒前
钮祜禄萱完成签到 ,获得积分10
49秒前
余味应助科研通管家采纳,获得10
1分钟前
kyle完成签到 ,获得积分10
1分钟前
怡心亭完成签到 ,获得积分10
1分钟前
1分钟前
LJ_2完成签到 ,获得积分10
1分钟前
ww完成签到,获得积分10
1分钟前
妖精完成签到 ,获得积分10
1分钟前
btcat完成签到,获得积分10
1分钟前
闫栋完成签到 ,获得积分10
1分钟前
花园里的蒜完成签到 ,获得积分0
1分钟前
Murray完成签到,获得积分10
1分钟前
小梦完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Youlu发布了新的文献求助10
1分钟前
刘雅彪完成签到 ,获得积分10
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
852应助Youlu采纳,获得10
1分钟前
艳子发布了新的文献求助10
1分钟前
彪壮的幻丝完成签到 ,获得积分10
1分钟前
乐悠悠完成签到 ,获得积分10
1分钟前
2分钟前
刘涵完成签到 ,获得积分10
2分钟前
务实完成签到 ,获得积分10
2分钟前
gwp1223完成签到,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780879
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226699
捐赠科研通 3041539
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758732