Protein dynamics inform protein structure: An interdisciplinary investigation of protein crystallization propensity

蛋白质结晶 蛋白质动力学 蛋白质结构 结晶 化学 计算生物学 生物 生物化学 有机化学
作者
Mohammad Madani,Anna Tarakanova
出处
期刊:Matter [Elsevier BV]
卷期号:7 (9): 2978-2995
标识
DOI:10.1016/j.matt.2024.04.023
摘要

Progress and potentialIn this study, we explicitly resolve protein dynamics to capture the critical determinants of protein crystallization propensity through an interpretable attention-based graph neural network model. We show here that proteins must be considered as dynamic moieties and that this essential attribute plays a pivotal role in resolving their crystallization propensity. This is the first work to use structural dynamics features for crystallization propensity prediction. We introduce DSDCrystal, a new toolbox for protein crystal quality prediction, encoded directly with protein dynamics as key input features. Our predictive tools may enable the rational design of protein sequences that result in a diffraction-quality crystal by considering comprehensive biological mechanisms. This framework expands the classical paradigm of structural biology and establishes a roadmap for layered and intuitive control for functional protein design.Highlights•Framework merges physics and ML to predict crystallization propensity via protein dynamics•An interpretable protein crystallization propensity predictor validated by MD simulation•New insights into how dynamics influence protein structure characterizationSummaryThe classical central paradigm of structural biology links a protein's sequence to its structure and function but overlooks conformational fluctuation that is integral to protein function. We propose a graph neural network model based on gated attention that explicitly incorporates protein dynamics via physics-based models to predict protein crystallization propensity. We compare results to all-atom molecular dynamics simulations of flexible, disordered human tropoelastin and ordered, globular human lysyl oxidase-like protein. Our findings show that fluctuating residues correlate with locally maximal attention scores in the neural network. By methodically truncating the sequences, we establish correlations between dynamical and physicochemical molecular properties and protein crystallization propensity. Accounting for comprehensive biological mechanisms, our tool can facilitate the rational design of protein sequences that lead to diffraction-quality crystals. Our study showcases the integration of physics-based and machine learning models for structure and property prediction, expanding the classical paradigm of structural biology.Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rwanq发布了新的文献求助10
1秒前
addd发布了新的文献求助10
2秒前
2秒前
zNuyoah完成签到,获得积分10
2秒前
熊二浪发布了新的文献求助10
3秒前
liyu发布了新的文献求助10
3秒前
王妍完成签到,获得积分10
4秒前
4秒前
5秒前
小米稀饭完成签到 ,获得积分10
5秒前
SYLH应助addd采纳,获得10
6秒前
瓣落的碎梦完成签到,获得积分0
7秒前
Amy完成签到,获得积分10
7秒前
沉静河马发布了新的文献求助10
8秒前
lh发布了新的文献求助10
8秒前
在水一方应助yuan采纳,获得10
9秒前
10秒前
熊二浪发布了新的文献求助10
10秒前
斯文败类应助方圆采纳,获得10
11秒前
宫城百事顺完成签到,获得积分10
11秒前
11秒前
zz完成签到,获得积分10
12秒前
张钦奎发布了新的文献求助10
13秒前
14秒前
sword发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
16秒前
sonder发布了新的文献求助10
16秒前
白勺发布了新的文献求助10
17秒前
SHAO发布了新的文献求助30
18秒前
酷波er应助俊逸的篮球采纳,获得10
18秒前
HZY完成签到,获得积分10
19秒前
19秒前
小白发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
杨美鑫发布了新的文献求助10
22秒前
22秒前
Lc应助白勺采纳,获得10
23秒前
熊二浪发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3984700
求助须知:如何正确求助?哪些是违规求助? 3527939
关于积分的说明 11238508
捐赠科研通 3266277
什么是DOI,文献DOI怎么找? 1803195
邀请新用户注册赠送积分活动 880840
科研通“疑难数据库(出版商)”最低求助积分说明 808358