Model-Predictive Control of Multilevel Inverters: Challenges, Recent Advances, and Trends

模型预测控制 控制(管理) 计算机科学 工程类 人工智能
作者
Ibrahim Harbi,José Rodríguez,Eyke Liegmann,Hamza Makhamreh,Marcelo Lobo Heldwein,Mateja Novak,Mattia Rossi,Mohamed Abdelrahem,Mohamed Trabelsi,Mostafa Ahmed,Πέτρος Καραμανάκος,Shuai Xu,Tomislav Dragičević,Ralph Kennel
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:38 (9): 10845-10868 被引量:64
标识
DOI:10.1109/tpel.2023.3288499
摘要

Model-predictive control (MPC) has emerged as a promising control method in power electronics, particularly for multiobjective control problems such as multilevel inverter (MLI) applications. Over the past two decades, improving the performance of MPC and tackling its technical challenges, such as computational load, modeling accuracy, cost function design, and weighting factor selection, have attracted great interest in power electronics. This article aims to discuss the current state of MPC strategies for MLI applications, describing the significance of each challenge with the reported effective solutions. Through this review, the MPC methods are categorized into two groups: direct MPC (without modulator) and indirect MPC (with modulator). The recent advances of each category are presented and analyzed, focusing on direct MPC as the most applied method for MLI topologies. In addition, some of the important concepts are experimentally validated through a case study and compared under the same operating conditions to evaluate the performance and highlight their features. Finally, the future trends of MPC for MLI applications are discussed based on the current state and reported developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu完成签到,获得积分10
1秒前
2秒前
cdercder应助mayberichard采纳,获得10
3秒前
古月发布了新的文献求助10
7秒前
7秒前
Bubble关注了科研通微信公众号
7秒前
10秒前
12秒前
CipherSage应助一颗椰子糖耶采纳,获得10
15秒前
16秒前
茉莉青提发布了新的文献求助10
17秒前
qiaoxi关注了科研通微信公众号
17秒前
田様应助xxl采纳,获得10
19秒前
20秒前
21秒前
灰鸽舞发布了新的文献求助10
23秒前
ding应助大山深处采纳,获得10
24秒前
斯文败类应助卡司采纳,获得10
26秒前
27秒前
28秒前
tyZhang完成签到,获得积分10
29秒前
eccentric完成签到,获得积分10
30秒前
30秒前
31秒前
32秒前
老实雪糕发布了新的文献求助10
32秒前
33秒前
你好好好发布了新的文献求助10
33秒前
共享精神应助科研采纳,获得10
33秒前
35秒前
35秒前
cai发布了新的文献求助10
36秒前
沉默雨莲发布了新的文献求助10
36秒前
公冶水香完成签到,获得积分10
37秒前
run发布了新的文献求助30
37秒前
jenningseastera应助笨笨梦松采纳,获得10
38秒前
38秒前
火星上雅寒完成签到 ,获得积分10
39秒前
40秒前
彭于晏应助你好好好采纳,获得10
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784026
求助须知:如何正确求助?哪些是违规求助? 3329139
关于积分的说明 10240207
捐赠科研通 3044616
什么是DOI,文献DOI怎么找? 1671150
邀请新用户注册赠送积分活动 800161
科研通“疑难数据库(出版商)”最低求助积分说明 759193