已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LGSleepNet: An Automatic Sleep Staging Model Based on Local and Global Representation Learning

计算机科学 交叉熵 人工智能 模式识别(心理学) 正交化 睡眠阶段 深度学习 熵(时间箭头) 冗余(工程) 脑电图 算法 多导睡眠图 心理学 物理 量子力学 精神科 操作系统
作者
Qi Shen,Junchang Xin,Xinyao Liu,Zhongyang Wang,Chuangang Li,Zhihong Huang,Zhiqiong Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:12
标识
DOI:10.1109/tim.2023.3298639
摘要

Sleep staging is an indispensable indicator for measuring sleep quality and evaluating sleep disorders. Deep learning methods have been successfully applied to automatic sleep staging (ASS) based on EEG signals, achieving significant progress. However, previous studies have been limited to extracting local features of EEG signals while neglecting the importance of global features. To solve this problem, we propose a novel ASS model named LGSleepNet, which consists of asymmetric Siamese neural network (ASNN), Deep adaptive orthogonal fusion (DAOF) block, and weighted polynomial cross entropy (WPCE) loss function. Specifically, the ASNN is capable of simultaneously extracting local and global features from EEG signals, which provides diverse semantic representations for sleep staging. Moreover, a DAOF block is proposed to eliminate the information redundancy and semantic deviation among heterogeneous features by orthogonalization and adaptive fusion, which strengthens the correlation representation between local and global features. Ultimately, a weighted polynomial cross entropy (WPCE) loss function is designed to improve the decision-making ability of the classification head and alleviate the problem of sample imbalance. We evaluate the LGSleepNet on three publicly available datasets, namely Sleep-EDF-20, Sleep-EDF-78, and SVUH-UCD, which achieves macro F1-scores of 80.7%, 76.0%, and 75.1% and overall accuracy of 86.0%, 82.3%, and 76.3%, respectively. The experimental results indicate that the LGSleepNet performs at an advanced level compared to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
20秒前
王志鹏完成签到 ,获得积分10
28秒前
hehehehe完成签到,获得积分10
32秒前
32秒前
佳期完成签到 ,获得积分10
35秒前
魏立翔发布了新的文献求助10
39秒前
stone完成签到,获得积分10
41秒前
铮铮完成签到,获得积分10
46秒前
科研通AI5应助科研通管家采纳,获得30
47秒前
天天快乐应助魏立翔采纳,获得10
49秒前
53秒前
平淡访冬完成签到 ,获得积分10
53秒前
hyg发布了新的文献求助10
59秒前
晏晏完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
木有完成签到 ,获得积分10
1分钟前
1分钟前
斯文败类应助jiaobu采纳,获得10
1分钟前
能干的荆完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助彭语梦采纳,获得10
1分钟前
忧郁凌波发布了新的文献求助10
1分钟前
1分钟前
黄立伟完成签到 ,获得积分10
1分钟前
忧郁凌波完成签到,获得积分10
1分钟前
传奇3应助健忘天曼采纳,获得10
1分钟前
1分钟前
junkook完成签到 ,获得积分10
1分钟前
科目三应助Tia采纳,获得10
1分钟前
江小白完成签到,获得积分0
1分钟前
磊少完成签到 ,获得积分10
1分钟前
1分钟前
王者归来完成签到,获得积分10
1分钟前
zy完成签到,获得积分10
1分钟前
Muniira发布了新的文献求助10
1分钟前
今后应助风华正茂采纳,获得30
1分钟前
凡可可发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336687
关于积分的说明 10281839
捐赠科研通 3053411
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803571
科研通“疑难数据库(出版商)”最低求助积分说明 761457