Contrastive deep support vector data description

超球体 特征(语言学) 模式识别(心理学) 人工智能 支持向量机 水准点(测量) 判别式 特征向量 数学 计算机科学 核(代数) 大地测量学 语言学 组合数学 哲学 地理
作者
Hong-Jie Xing,Pingping Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:143: 109820-109820 被引量:9
标识
DOI:10.1016/j.patcog.2023.109820
摘要

In comparison with support vector data description (SVDD), deep SVDD (DSVDD) is more suitable for dealing with large-scale data sets. DSVDD uses mapping network to replace the role of kernel mapping in SVDD. Moreover, the objective of DSVDD is to simultaneously learn the optimal connection weights of mapping network and the minimum volume of hypersphere. To further improve the performance of DSVDD for tackling large-scale data sets and obtain the discriminative features of the given samples in a self-supervised learning manner, contrastive DSVDD (CDSVDD) is proposed in this study. In the pre-training phase of CDSVDD, the contrastive loss and the rotation prediction loss are jointly minimized to achieve the optimal feature representations. Furthermore, the learned feature representations are utilized to determine the hypersphere center. In the training phase of CDSVDD, the distances between the obtained feature representations and the hypersphere center together with the contrastive loss are simultaneously minimized to derive the optimal network connection weights, the minimum volume of hypersphere and the optimal feature representations. In addition, CDSVDD can efficiently solve the hypersphere collapse problem of DSVDD. The ablation study on CDSVDD verifies that compared with the case of determining the hypersphere center by the feature representations of the original samples, the hypersphere center determined by the feature representations of the augmented samples makes CDSVDD achieve better hypersphere boundary and more compact feature representations. Experimental results on the four benchmark data sets demonstrate that the proposed CDSVDD acquires better detection performance in comparison with its six pertinent methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
刚刚
fletmer发布了新的文献求助10
1秒前
胡茶茶发布了新的文献求助10
2秒前
3秒前
4秒前
墨上筠发布了新的文献求助10
4秒前
5秒前
心灵美雅霜完成签到,获得积分10
6秒前
lucas应助科研通管家采纳,获得10
8秒前
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
lucas应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
紫色的云完成签到,获得积分10
8秒前
保尔china发布了新的文献求助30
8秒前
9秒前
9秒前
9秒前
打打应助123采纳,获得10
15秒前
16秒前
yummy完成签到,获得积分10
16秒前
16秒前
SciGPT应助负责的方盒采纳,获得10
18秒前
方子怡完成签到,获得积分20
19秒前
大模型应助Ciro采纳,获得10
20秒前
fletmer完成签到,获得积分20
20秒前
21秒前
不想干活应助小猪采纳,获得30
22秒前
不想干活应助cqnuly采纳,获得30
22秒前
无花果应助保尔china采纳,获得30
22秒前
打打应助Ai_niyou采纳,获得10
22秒前
史淼荷发布了新的文献求助10
23秒前
25秒前
28秒前
璨澄发布了新的文献求助10
29秒前
30秒前
Ciro完成签到,获得积分10
33秒前
江姜发布了新的文献求助30
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4188515
求助须知:如何正确求助?哪些是违规求助? 3724370
关于积分的说明 11734786
捐赠科研通 3401474
什么是DOI,文献DOI怎么找? 1866599
邀请新用户注册赠送积分活动 923440
科研通“疑难数据库(出版商)”最低求助积分说明 834502