The imperative for regulatory oversight of large language models (or generative AI) in healthcare

转化式学习 背景(考古学) 医疗保健 危害 工程伦理学 公共关系 业务 政治学 心理学 工程类 法学 教育学 生物 古生物学
作者
Bertalan Meskó,Eric J. Topol
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:6 (1) 被引量:509
标识
DOI:10.1038/s41746-023-00873-0
摘要

The rapid advancements in artificial intelligence (AI) have led to the development of sophisticated large language models (LLMs) such as GPT-4 and Bard. The potential implementation of LLMs in healthcare settings has already garnered considerable attention because of their diverse applications that include facilitating clinical documentation, obtaining insurance pre-authorization, summarizing research papers, or working as a chatbot to answer questions for patients about their specific data and concerns. While offering transformative potential, LLMs warrant a very cautious approach since these models are trained differently from AI-based medical technologies that are regulated already, especially within the critical context of caring for patients. The newest version, GPT-4, that was released in March, 2023, brings the potentials of this technology to support multiple medical tasks; and risks from mishandling results it provides to varying reliability to a new level. Besides being an advanced LLM, it will be able to read texts on images and analyze the context of those images. The regulation of GPT-4 and generative AI in medicine and healthcare without damaging their exciting and transformative potential is a timely and critical challenge to ensure safety, maintain ethical standards, and protect patient privacy. We argue that regulatory oversight should assure medical professionals and patients can use LLMs without causing harm or compromising their data or privacy. This paper summarizes our practical recommendations for what we can expect from regulators to bring this vision to reality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
降龙没有十八掌关注了科研通微信公众号
1秒前
六六大顺完成签到 ,获得积分10
2秒前
临风发布了新的文献求助10
2秒前
pw完成签到 ,获得积分20
5秒前
SciGPT应助Yelanjiao采纳,获得10
5秒前
5秒前
肖肖完成签到,获得积分10
6秒前
皮代谷完成签到,获得积分10
6秒前
000发布了新的文献求助10
6秒前
6秒前
李爱国应助彩色的盼秋采纳,获得10
7秒前
传奇3应助111采纳,获得10
8秒前
9秒前
大个应助蕙心采纳,获得10
9秒前
肖肖发布了新的文献求助10
10秒前
喵喵完成签到 ,获得积分10
11秒前
丁大完成签到,获得积分10
12秒前
张尿尿发布了新的文献求助10
12秒前
SYLH应助临风采纳,获得10
12秒前
希望天下0贩的0应助临风采纳,获得10
12秒前
13秒前
我是老大应助melody采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
14秒前
海风应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
科目三应助科研通管家采纳,获得10
14秒前
14秒前
16秒前
所所应助000采纳,获得30
16秒前
pw发布了新的文献求助10
16秒前
guohuahe发布了新的文献求助10
18秒前
18秒前
余可馨发布了新的文献求助10
20秒前
yeah发布了新的文献求助10
21秒前
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4027918
求助须知:如何正确求助?哪些是违规求助? 3567305
关于积分的说明 11354411
捐赠科研通 3298381
什么是DOI,文献DOI怎么找? 1816283
邀请新用户注册赠送积分活动 890719
科研通“疑难数据库(出版商)”最低求助积分说明 813726