硅光电倍增管
瞬态(计算机编程)
信号(编程语言)
水准点(测量)
脉搏(音乐)
噪音(视频)
计算机科学
线性回归
线性预测
算法
人工智能
探测器
电信
闪烁体
大地测量学
机器学习
图像(数学)
程序设计语言
地理
操作系统
作者
Wolfgang Schmailzl,C. Piemonte,E. Garutti,W. Hänsch
标识
DOI:10.1088/1748-0221/18/07/p07010
摘要
Abstract This paper presents a novel approach using multiple linear regression to process transient signals from silicon photomultipliers. The method provides excellent noise suppression and pulse detection in scenarios with a high pulse count rate and superimposed pulses. Insights into its implementation and benchmark results are presented. We also show how this approach can be used to automatically detect the pulse shape from a given transient signal, providing good detection for count rates up to 90 MHz. Experimental data are used to present an application where this algorithm improves charge spectrum resolution by an order of magnitude.
科研通智能强力驱动
Strongly Powered by AbleSci AI