清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Accelerating ligand discovery by combining Bayesian optimization with MMGBSA-based binding affinity calculations

贝叶斯优化 贝叶斯概率 计算生物学 计算机科学 配体(生物化学) 化学 人工智能 生物 生物化学 受体
作者
L.B. Andersen,Max Rausch-Dupont,Alejandro Martínez León,Andrea Volkamer,Jochen S. Hub,Dietrich Klakow
标识
DOI:10.1101/2025.06.22.660936
摘要

Predicting protein-ligand binding affinity with high accuracy is critical in structure-based drug discovery. While docking methods offer computational efficiency, they often lack the precision required for reliable affinity ranking. In contrast, molecular dynamics (MD)-based approaches such as MMGBSA provide more accurate binding free energy estimates but are computationally intensive, limiting their scalability. To address this trade-off, we introduce an active learning framework that automates molecule selection for docking and MD simulations, replacing manual expert-driven decisions with a data-efficient, model-guided strategy. Our approach integrates fixed - partly pre-trained deep learning - molecular embeddings (MolFormer, ChemBERTa-2, and Morgan fingerprints) with adaptive regression models (e.g. Bayesian Ridge and Random Forest) to iteratively improve binding affinity predictions. We evaluate this approach retrospectively on a new dataset of 60,000 chemically diverse compounds from ZINC-22 targeting the MCL1 protein using both AutoDock Vina and MMGBSA. Our results show that incorporating MMGBSA scores into the active learning loop significantly enhances performance, recovering 79.9% of the top 1% binders in the whole dataset, compared to only 6.7% when using docking scores alone. Notably, MMGBSA exhibits a stronger correlation with experimental binding affinities than AutoDock Vina on our dataset and enables more accurate ranking of candidate compounds in a runtime efficient way. Furthermore, we demonstrate that a one-at-a-time acquisition active learning strategy consistently outperforms traditional batched acquisition, the latter achieving just 78.4% recovery with MolFormer and Bayesian Ridge. These findings underscore the potential of integrating deep learning-based molecular representations with MD-level accuracy in an active learning framework, offering a scalable and efficient path to accelerate virtual screening and improve hit identification in drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dup完成签到,获得积分10
14秒前
bo完成签到 ,获得积分10
14秒前
zpc猪猪完成签到,获得积分10
20秒前
31秒前
十一苗完成签到 ,获得积分10
31秒前
花落无声完成签到 ,获得积分10
35秒前
wang5945完成签到 ,获得积分10
39秒前
Lexi完成签到 ,获得积分10
42秒前
名侦探柯基完成签到 ,获得积分10
45秒前
sy完成签到,获得积分10
51秒前
1分钟前
郑旭辉发布了新的文献求助10
1分钟前
YZ完成签到 ,获得积分10
1分钟前
乐乐应助郑旭辉采纳,获得10
1分钟前
1分钟前
郑旭辉完成签到,获得积分10
1分钟前
轻松幼南发布了新的文献求助10
1分钟前
nkuwangkai完成签到,获得积分10
1分钟前
耍酷的觅荷完成签到 ,获得积分10
1分钟前
老福贵儿完成签到 ,获得积分10
1分钟前
失眠的香蕉完成签到 ,获得积分0
2分钟前
故意的书本完成签到 ,获得积分10
2分钟前
fogsea完成签到,获得积分0
2分钟前
科研通AI2S应助陶醉的烤鸡采纳,获得10
2分钟前
Hiram完成签到,获得积分10
2分钟前
轻松幼南完成签到,获得积分10
2分钟前
2分钟前
zhang完成签到 ,获得积分10
2分钟前
2分钟前
慕青应助轻松幼南采纳,获得10
2分钟前
2分钟前
齐阳春完成签到 ,获得积分10
2分钟前
wayne完成签到 ,获得积分10
2分钟前
zzgpku完成签到,获得积分0
2分钟前
赵一樽完成签到,获得积分10
2分钟前
陶醉的烤鸡完成签到 ,获得积分10
3分钟前
yanmh完成签到,获得积分10
3分钟前
叁月二完成签到 ,获得积分10
3分钟前
海阔天空完成签到 ,获得积分10
3分钟前
keyan完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4471684
求助须知:如何正确求助?哪些是违规求助? 3931359
关于积分的说明 12196569
捐赠科研通 3585702
什么是DOI,文献DOI怎么找? 1971012
邀请新用户注册赠送积分活动 1008916
科研通“疑难数据库(出版商)”最低求助积分说明 902805