Feature selection using metaheuristics to predict annual amyotrophic lateral sclerosis progression

肌萎缩侧索硬化 特征选择 元启发式 特征(语言学) 选择(遗传算法) 计算机科学 人工智能 机器学习 模式识别(心理学) 医学 疾病 病理 语言学 哲学
作者
Thibault Anani,Jean‐François Pradat‐Peyre,François Delbot,Claude Desnuelle,Anne‐Sophie Rolland,David Devos,Pierre-François Pradat
出处
期刊:Amyotrophic lateral sclerosis & frontotemporal degeneration [Taylor & Francis]
卷期号:: 1-16
标识
DOI:10.1080/21678421.2025.2522399
摘要

Amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease with no curative treatment and affecting motor neurons, leads to motor weakness, atrophy, spasticity and difficulties with speech, swallowing, and breathing. Accurately predicting disease progression and survival is crucial for optimizing patient care, intervention planning, and informed decision-making. Data were gathered from the PRO-ACT database (4659 patients), clinical trial data from ExonHit Therapeutics (384 patients) and the PULSE multicenter cohort aimed at identifying predictive factors of disease progression (198 patients). Machine learning (ML) techniques including logistic/linear regression (LR), K-nearest neighbors, decision tree, random forest, and light gradient boosting machine (LGBM) were applied to forecast ALS progression using ALS Functional Rating Scale (ALSFRS) scores and patient survival over one year. Models were validated using 10-fold cross-validation, while Kaplan-Meier estimates were employed to cluster patients according to their profiles. To enhance the predictive accuracy of our models, we performed feature selection using ANOVA and differential evolution (DE). LR with DE achieved a balanced accuracy of 76.05% on validation (ranging from 68.6% to 79.8% per fold) and 76.33% on test data, with an AUC of 0.84. With Kaplan-Meier's estimates, we identified five distinct patient clusters (C-index = 0.8; log-rank test p value ≤0.0001). Additionally, LGBM predictions for ALSFRS progression at 3 months yielded an RMSE of 3.14 and an adjusted R2 of 0.764. This study showcases the potential of ML models to provide significant predictive insights in ALS, enhancing the understanding of disease dynamics and supporting patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vincent发布了新的文献求助10
刚刚
隐形曼青应助进取拼搏采纳,获得10
2秒前
jenningseastera应助yuer采纳,获得10
2秒前
过氧化氢应助杭谷波采纳,获得10
2秒前
41应助LaTeXer采纳,获得20
3秒前
斯人完成签到 ,获得积分10
3秒前
完美世界应助E1dent采纳,获得10
3秒前
S1mple_gentleman完成签到,获得积分10
4秒前
勤恳的依霜完成签到,获得积分10
4秒前
斯文败类应助追寻荔枝采纳,获得10
4秒前
啊咧咧完成签到,获得积分10
5秒前
cjm发布了新的文献求助10
5秒前
木木SCI完成签到 ,获得积分10
6秒前
任性的诗柳完成签到 ,获得积分10
6秒前
6秒前
linlin发布了新的文献求助10
10秒前
11秒前
Apricity发布了新的文献求助10
11秒前
41给dhmdoctor的求助进行了留言
11秒前
12秒前
FashionBoy应助饿崽要吃饭采纳,获得10
13秒前
丘比特应助酷酷山柳采纳,获得10
14秒前
16秒前
17秒前
来日方长应助人机求救中采纳,获得10
17秒前
SciGPT应助人机求救中采纳,获得10
17秒前
三花花花完成签到,获得积分10
17秒前
周123完成签到,获得积分10
17秒前
小时候发布了新的文献求助10
19秒前
三花花花发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
勤奋的从梦完成签到,获得积分10
21秒前
高兴不尤发布了新的文献求助10
21秒前
liu发布了新的文献求助10
21秒前
21秒前
充电宝应助杭谷波采纳,获得20
22秒前
852应助微眠采纳,获得10
22秒前
22秒前
香蕉觅云应助Lars采纳,获得10
23秒前
丘比特应助liars采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4005993
求助须知:如何正确求助?哪些是违规求助? 3545917
关于积分的说明 11294361
捐赠科研通 3281886
什么是DOI,文献DOI怎么找? 1809798
邀请新用户注册赠送积分活动 885568
科研通“疑难数据库(出版商)”最低求助积分说明 811048