Fault Classification in Power Transformers Using Dissolved Gas Analysis and Optimized Machine Learning Algorithms

溶解气体分析 计算机科学 算法 断层(地质) 变压器 人工智能 机器学习 模式识别(心理学) 工程类 电气工程 地质学 地震学 变压器油 电压
作者
Vuyani M. N. Dladla,Bonginkosi Thango
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:13 (8): 742-742
标识
DOI:10.3390/machines13080742
摘要

Power transformers are critical assets in electrical power systems, yet their fault diagnosis often relies on conventional dissolved gas analysis (DGA) methods such as the Duval Pentagon and Triangle, Key Gas, and Rogers Ratio methods. Even though these methods are commonly used, they present limitations in classification accuracy, concurrent fault identification, and manual sample handling. In this study, a framework of optimized machine learning algorithms that integrates Chi-squared statistical feature selection with Random Search hyperparameter optimization algorithms was developed to enhance transformer fault classification accuracy using DGA data, thereby addressing the limitations of conventional methods and improving diagnostic precision. Utilizing the R2024b MATLAB Classification Learner App, five optimized machine learning algorithms were trained and tested using 282 transformer oil samples with varying DGA gas concentrations obtained from industrial transformers, the IEC TC10 database, and the literature. The optimized and assessed models are Linear Discriminant, Naïve Bayes, Decision Trees, Support Vector Machine, Neural Networks, k-Nearest Neighbor, and the Ensemble Algorithm. From the proposed models, the best performing algorithm, Optimized k-Nearest Neighbor, achieved an overall performance accuracy of 92.478%, followed by the Optimized Neural Network at 89.823%. To assess their performance against the conventional methods, the same dataset used for the optimized machine learning algorithms was used to evaluate the performance of the Duval Triangle and Duval Pentagon methods using VAISALA DGA software version 1.1.0; the proposed models outperformed the conventional methods, which could only achieve a classification accuracy of 35.757% and 30.818%, respectively. This study concludes that the application of the proposed optimized machine learning algorithms can enhance the classification accuracy of DGA-based faults in power transformers, supporting more reliable diagnostics and proactive maintenance strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注海莲完成签到,获得积分20
刚刚
郁是忻发布了新的文献求助10
刚刚
曾经的秋寒完成签到,获得积分10
1秒前
1秒前
棣月永远关注了科研通微信公众号
3秒前
晚风做酒完成签到,获得积分10
4秒前
沙克几十块完成签到,获得积分0
5秒前
以牧发布了新的文献求助10
5秒前
兮豫完成签到 ,获得积分10
6秒前
6秒前
Dnil完成签到,获得积分10
7秒前
lsw完成签到,获得积分10
7秒前
8秒前
田様应助Aurora采纳,获得10
9秒前
怡然凌柏完成签到 ,获得积分10
11秒前
11秒前
12秒前
张宇完成签到,获得积分10
12秒前
潇湘妃子59完成签到,获得积分10
12秒前
Roy发布了新的文献求助10
14秒前
旦皋完成签到 ,获得积分10
14秒前
程破茧完成签到,获得积分0
14秒前
上官若男应助一百采纳,获得10
15秒前
hint应助优美伟泽采纳,获得10
15秒前
Calla完成签到,获得积分10
15秒前
16秒前
17秒前
百尺竿头发布了新的文献求助20
17秒前
Two_h完成签到,获得积分10
18秒前
JayChou完成签到,获得积分10
18秒前
19秒前
WeiChang发布了新的文献求助10
20秒前
20秒前
友好听荷发布了新的文献求助20
21秒前
失眠鞅应助Calla采纳,获得10
22秒前
霖lin发布了新的文献求助10
22秒前
温纲完成签到,获得积分10
23秒前
CY03发布了新的文献求助10
25秒前
田様应助zhouyan采纳,获得10
25秒前
棣月永远发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
La RSE en pratique 400
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4432812
求助须知:如何正确求助?哪些是违规求助? 3908882
关于积分的说明 12141837
捐赠科研通 3554794
什么是DOI,文献DOI怎么找? 1950979
邀请新用户注册赠送积分活动 990982
科研通“疑难数据库(出版商)”最低求助积分说明 886845