Machine Learning-Driven Optimization of Therapeutic Substance Composition for High-Hardness, Fast-Dissolving Microneedles for Androgenetic Alopecia Treatment.

材料科学 溶解 作文(语言) 纳米技术 化学工程 哲学 语言学 工程类
作者
Peiyu Yan,Jing Sun,Yuehua Zhao,Wei Deng,Miaomiao Zhang,Yang Li,Xiangru Chen,Ming Hu,Jilin Tang,Dapeng Wang
出处
期刊:PubMed
标识
DOI:10.1021/acsnano.5c05505
摘要

Treating androgenetic alopecia (AGA) with platelet-rich plasma (PRP) holds great promise; however, effective and comfortable delivery remains a challenge. Direct injection causes pain, and PRP-incorporated microneedles (MNs) have low hardness and slow dissolution. To tackle this problem, we propose a machine-learning (ML)-driven strategy, which involves integrating the selection of therapeutic substances, orthogonal experiment designs, ML prediction, and Pareto front identification. Through the implementation of only 18 experiments based on orthogonal experiment designs, this ML-assisted strategy can pinpoint an optimal material composition that concurrently attains high hardness and rapid dissolution. We utilized this optimal material composition to fabricate MNs, and their biological functionality was demonstrated through multiple aspects, including the sustained release of various growth factors over 30 days, more than 90% bacterial inhibition, reactive oxygen species scavenging, and the promotion of the proliferation of dihydrotestosterone-damaged human dermal papilla cells. In vivo studies indicated significant hair regrowth in AGA mice through the activation of the Wnt/β-catenin pathway, outperforming the effects of minoxidil. Significantly, this approach eliminates the biosafety risks associated with the use of synthetic materials. The developed framework is anticipated to serve as a generalizable paradigm for expediting the clinical translation of biomaterials such as MNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Sungoose完成签到,获得积分20
5秒前
9秒前
9秒前
哈哈应助走四方采纳,获得10
11秒前
11秒前
13秒前
核桃发布了新的文献求助10
14秒前
任志政完成签到 ,获得积分10
14秒前
Eon发布了新的文献求助10
16秒前
高挑的不凡完成签到,获得积分10
17秒前
小明应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得30
18秒前
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
李爱国应助云宝采纳,获得10
20秒前
22秒前
小贾完成签到,获得积分10
22秒前
开朗黑猫完成签到,获得积分10
24秒前
25秒前
疯狂的舞仙完成签到,获得积分10
26秒前
生而狂野天逸完成签到,获得积分10
27秒前
ZERO发布了新的文献求助10
28秒前
科研通AI6应助domingo采纳,获得10
31秒前
Glorious完成签到,获得积分10
31秒前
PRUNUS完成签到,获得积分10
32秒前
32秒前
冰冰完成签到,获得积分10
33秒前
科研通AI5应助qly采纳,获得10
34秒前
云宝发布了新的文献求助10
37秒前
38秒前
Pprain完成签到,获得积分10
40秒前
41秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4434291
求助须知:如何正确求助?哪些是违规求助? 3909690
关于积分的说明 12143647
捐赠科研通 3555781
什么是DOI,文献DOI怎么找? 1951568
邀请新用户注册赠送积分活动 991602
科研通“疑难数据库(出版商)”最低求助积分说明 887342