MP74-15 MACHINE LEARNING-BASED CONSTRUCTION AND VALIDATION OF A 68 GA-PSMA PET/CT RADIOMICS MODEL FOR PREDICTING ISUP GRADING IN PROSTATE CANCER

前列腺癌 医学 前列腺切除术 无线电技术 分级(工程) 前列腺 前列腺活检 活检 核医学 放射科 癌症 内科学 工程类 土木工程
作者
Honghu Zhang,Yongxiang Tang,Lin Qi,Minfeng Chen,Xiaomei Gao,Shuo Hu,Yi Cai
出处
期刊:The Journal of Urology [Lippincott Williams & Wilkins]
卷期号:211 (5S) 被引量:1
标识
DOI:10.1097/01.ju.0001008632.59099.b9.15
摘要

You have accessJournal of UrologyProstate Cancer: Detection & Screening VI (MP74), Moderated Poster 741 May 2024MP74-15 MACHINE LEARNING-BASED CONSTRUCTION AND VALIDATION OF A 68GA-PSMA PET/CT RADIOMICS MODEL FOR PREDICTING ISUP GRADING IN PROSTATE CANCER Honghu Zhang, Yongxiang Tang, Lin Qi, Minfeng Chen, Xiaomei Gao, Shuo Hu, and Yi Cai Honghu ZhangHonghu Zhang , Yongxiang TangYongxiang Tang , Lin QiLin Qi , Minfeng ChenMinfeng Chen , Xiaomei GaoXiaomei Gao , Shuo HuShuo Hu , and Yi CaiYi Cai View All Author Informationhttps://doi.org/10.1097/01.JU.0001008632.59099.b9.15AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: The International Society of Urological Pathology (ISUP) grading of prostate cancer is one of the key determinants in the management and treatment planning for PCa patients. Accurate non-invasive assessment of the ISUP grading group would be highly beneficial for decisions regarding biopsy targeting and treatment. The use of PSMA-PET/CT radiomics for predicting ISUP has not been widely studied. The aim of this study is to investigate the role of 68 Ga-PSMA-11 PET/CT radiomics in predicting the ISUP grading of primary prostate cancer (PCa). METHODS: This retrospective study included 252 prostate cancer patients who underwent 68Ga-PSMA-11 PET/CT before prostate biopsy or radical prostatectomy. The entire prostate was used as the volume of interest (VOI). Significantly discriminative features were selected using the classical Minimum Redundancy Maximum Relevance (mRMR) algorithm and the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. In each subset of analysis, 8 separate machine learning (ML) classifiers were trained and tested using ten-fold cross-validation. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the area under the receiver operating characteristic curve (AUC) were calculated for each model. RESULTS: Among the 252 patients, 99 had prostate cancer with ISUP <4, and 153 had prostate cancer with ISUP ≥4. In the best-performing prediction model in the test cohort, the group AUC was 0.834 (Sensitivity, 75.6%, specificity, 82.8%, PPV, 0.872, and NPV, 0.686). Furthermore, when combining PSA and SUVmax, a more robust prediction model was constructed, with a training group AUC of 0.877(Sensitivity, 75.6%, specificity, 89.7%, PPV, 0.919, and NPV, 0.703). CONCLUSIONS: This study established and validated a radiomics model based on 68Ga-PSMA PET/CT, providing an accurate and non-invasive method for predicting ISUP grading. Additionally, it opened up new avenues for combining radiomics with clinical pathology data to predict ISUP grading. Source of Funding: This research was supported by the key Research and Development program of Hunan Province (2021SK2014, 2023SK2017), the Science and Technology Innovation Team Talent Project of Hunan Province (2021RC4056), the National Natural Science Foundation of China(82272907, 81974397, 91859207, 81771873), and the clinical research foundation of the National Clinical Research Center for Geriatric Diseases (XIANGYA; 2020LNJJ01, 2022LNJJ13) © 2024 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 211Issue 5SMay 2024Page: e1199 Advertisement Copyright & Permissions© 2024 by American Urological Association Education and Research, Inc.Metrics Author Information Honghu Zhang More articles by this author Yongxiang Tang More articles by this author Lin Qi More articles by this author Minfeng Chen More articles by this author Xiaomei Gao More articles by this author Shuo Hu More articles by this author Yi Cai More articles by this author Expand All Advertisement PDF downloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柴胡发布了新的文献求助10
刚刚
刚刚
LCY完成签到,获得积分10
1秒前
瓦尔登包完成签到 ,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
大龙哥886应助科研通管家采纳,获得10
2秒前
不呆应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
陈昭琼发布了新的文献求助10
2秒前
Hello应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
Anna应助科研通管家采纳,获得10
3秒前
3秒前
开心之王完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
等待的龙猫完成签到,获得积分10
4秒前
Juice完成签到,获得积分20
4秒前
4秒前
5秒前
否极泰来应助圆圆懒羊羊采纳,获得10
5秒前
5秒前
5秒前
6秒前
zzyytt完成签到,获得积分10
6秒前
勋出色发布了新的文献求助10
6秒前
hxsscsj完成签到,获得积分10
6秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4059408
求助须知:如何正确求助?哪些是违规求助? 3597679
关于积分的说明 11428825
捐赠科研通 3322586
什么是DOI,文献DOI怎么找? 1826829
邀请新用户注册赠送积分活动 897461
科研通“疑难数据库(出版商)”最低求助积分说明 818424