Strength models of near-surface mounted (NSM) fibre-reinforced polymer (FRP) shear-strengthened RC beams based on machine learning approaches

纤维增强塑料 材料科学 结构工程 复合材料 曲面(拓扑) 剪切(地质) 钢筋混凝土 工程类 几何学 数学
作者
Ke Yan,S.S. Zhang,M.J. Jedrzejko,Guan Lin,Wengui Li,X.F. Nie
出处
期刊:Composite Structures [Elsevier BV]
卷期号:337: 118045-118045 被引量:7
标识
DOI:10.1016/j.compstruct.2024.118045
摘要

The shear strengthening of reinforced concrete (RC) beams using near-surface mounted (NSM) fibre-reinforced polymer (FRP) bars/strips has gained substantial research attention worldwide. However, owing to the complex failure mechanisms and many influencing parameters, the shear capacities of NSM FRP shear-strengthened beams are difficult to predict. Accordingly, this study adopted machine learning approaches to predict the shear capacity of strengthened beams. An experimental database was constructed comprising 130 rectangular/T-shaped beams and their 15 parameters, collected from the existing literature. Subsequently, a genetic-algorithm-improved back propagation neural network (GA-BPNN) trained with a Bayesian regularisation (BR) algorithm was employed, which was capable of giving accurate predictions on shear capacities of strengthened beams and own good generalisation ability. Furthermore, the GA-BPNN was used for parametric studies to investigate the parameter effects on the contributions of concrete, steel stirrups, and NSM FRP to the shear capacity. Finally, with reference to the GA-BPNN parametric analyses and existing models, a design-oriented strength model for calculating the shear capacities of NSM FRP shear-strengthened beams was proposed and optimised using the genetic algorithm. A comparison with existing models proved the higher prediction accuracy of the proposed strength model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
just_cook完成签到,获得积分10
3秒前
南栀完成签到 ,获得积分10
4秒前
huihuiyve完成签到,获得积分10
7秒前
pluto应助lam采纳,获得10
8秒前
调皮黑猫应助峰回路转采纳,获得50
8秒前
9秒前
海迪发布了新的文献求助10
9秒前
韩瑶发布了新的文献求助10
9秒前
平常的毛豆应助南栀采纳,获得10
11秒前
Zetlynn完成签到,获得积分10
12秒前
科研通AI5应助dido采纳,获得10
13秒前
14秒前
小男孩发布了新的文献求助10
14秒前
李健的小迷弟应助gloval采纳,获得10
15秒前
在水一方应助哇哈哈采纳,获得10
15秒前
黑大帅完成签到,获得积分10
16秒前
17秒前
响铃发布了新的文献求助10
19秒前
闪闪火车完成签到 ,获得积分10
19秒前
21秒前
jubaoswag发布了新的文献求助20
21秒前
pluto应助lam采纳,获得10
22秒前
22秒前
sun完成签到,获得积分10
26秒前
科研通AI5应助AQ采纳,获得10
27秒前
28秒前
十一完成签到,获得积分10
28秒前
充电宝应助踏实口红采纳,获得10
29秒前
30秒前
zhoutiantian完成签到 ,获得积分10
31秒前
小男孩完成签到,获得积分10
32秒前
32秒前
KanmenRider发布了新的文献求助10
32秒前
ZZZZZ发布了新的文献求助10
34秒前
轻松的小虾米完成签到,获得积分10
34秒前
34秒前
科研通AI5应助赖道之采纳,获得10
35秒前
饭饭发布了新的文献求助10
36秒前
Lemon发布了新的文献求助10
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742