Knowledge-aware fine-grained attention networks with refined knowledge graph embedding for personalized recommendation

计算机科学 知识图 嵌入 图形 特征学习 可扩展性 机器学习 推荐系统 人工智能 情报检索 理论计算机科学 数据库
作者
Wei Wang,Xiaoxuan Shen,Baolin Yi,Huanyu Zhang,Jianfang Liu,Chao Dai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123710-123710 被引量:20
标识
DOI:10.1016/j.eswa.2024.123710
摘要

Recommendation systems aim to provide users with personalized and accurate services by integrating various machine learning technologies. Suffering from the puzzles such as cold-start and data sparsity, recommendation models has received extensive attention by incorporating knowledge graphs as additional supplementary information to effectively solve these problems. More recently, graph neural networks (GNNs) have been adopted to establish knowledge-aware recommendation models and made considerable achievements. Nevertheless, the existing GNN-based approaches are inadequate in the following two aspects: (1) How to achieve sufficient high-order collaborative signals? (2) How to reduce the impact of redundant KG information on representation? To overcome these limitations, we propose a novel framework KFGAN with Knowledge-aware Fine-grained Attention Networks for personalized knowledge-aware recommendation, which captures user's preferences by encoding the relation paths and associated entities and generates refined knowledge graphs to learn the potential semantic information. Specifically, by integrating the high-order collaborative signals of users and items and the structural information of knowledge graph, KFGAN enriches the feature representation of users and items and realizes the consistency and coherence of CF and KG information. Furthermore, KFGAN draws a lesson from graph contrastive learning approach to accomplish refined knowledge graph embedding, which alleviates the interference of redundant KG signal to the model and mines the latent semantic information in KG. Massive experimental results on three benchmark datasets prove that KFGAN model dramatically outperforms the current state-of-the-art baselines. The code and experimental datasets will be available at https://github.com/weiwang1992/KFGAN to verify and study for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyh发布了新的文献求助10
刚刚
刚刚
111完成签到,获得积分10
刚刚
刚刚
Akim应助ddd采纳,获得10
1秒前
Majiko发布了新的文献求助10
1秒前
xdc完成签到,获得积分10
1秒前
舒适的晓旋完成签到,获得积分10
2秒前
lcj完成签到,获得积分10
2秒前
向日葵完成签到,获得积分10
2秒前
科研通AI5应助kulei采纳,获得10
3秒前
中海完成签到,获得积分10
3秒前
拼搏新筠完成签到 ,获得积分10
4秒前
南亭完成签到,获得积分10
4秒前
勤劳高跟鞋完成签到,获得积分10
4秒前
一口一个完成签到,获得积分10
4秒前
4秒前
zzzz完成签到,获得积分10
5秒前
wisdom完成签到,获得积分10
5秒前
雯子完成签到,获得积分10
6秒前
jingyi完成签到,获得积分10
6秒前
6秒前
7秒前
NexusExplorer应助李Li采纳,获得10
7秒前
甜甜圈完成签到 ,获得积分10
7秒前
7秒前
光电效应完成签到,获得积分10
7秒前
朴实的凡阳完成签到,获得积分10
8秒前
8秒前
鱼鱼鱼KYSL完成签到 ,获得积分10
8秒前
9秒前
lyh完成签到,获得积分10
9秒前
陈陈陈完成签到 ,获得积分10
9秒前
王树茂完成签到,获得积分10
10秒前
burno1112完成签到,获得积分10
11秒前
RPG发布了新的文献求助10
11秒前
赫赫发布了新的文献求助10
12秒前
和谐碧琴完成签到,获得积分10
12秒前
杏仁核完成签到,获得积分10
13秒前
PN_Allen完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4345523
求助须知:如何正确求助?哪些是违规求助? 3852076
关于积分的说明 12023505
捐赠科研通 3493663
什么是DOI,文献DOI怎么找? 1917056
邀请新用户注册赠送积分活动 960029
科研通“疑难数据库(出版商)”最低求助积分说明 860057