Knowledge-aware fine-grained attention networks with refined knowledge graph embedding for personalized recommendation

计算机科学 知识图 嵌入 图形 特征学习 可扩展性 机器学习 推荐系统 人工智能 情报检索 理论计算机科学 数据库
作者
Wei Wang,Xiaoxuan Shen,Baolin Yi,Huanyu Zhang,Jianfang Liu,Chao Dai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123710-123710 被引量:15
标识
DOI:10.1016/j.eswa.2024.123710
摘要

Recommendation systems aim to provide users with personalized and accurate services by integrating various machine learning technologies. Suffering from the puzzles such as cold-start and data sparsity, recommendation models has received extensive attention by incorporating knowledge graphs as additional supplementary information to effectively solve these problems. More recently, graph neural networks (GNNs) have been adopted to establish knowledge-aware recommendation models and made considerable achievements. Nevertheless, the existing GNN-based approaches are inadequate in the following two aspects: (1) How to achieve sufficient high-order collaborative signals? (2) How to reduce the impact of redundant KG information on representation? To overcome these limitations, we propose a novel framework KFGAN with Knowledge-aware Fine-grained Attention Networks for personalized knowledge-aware recommendation, which captures user's preferences by encoding the relation paths and associated entities and generates refined knowledge graphs to learn the potential semantic information. Specifically, by integrating the high-order collaborative signals of users and items and the structural information of knowledge graph, KFGAN enriches the feature representation of users and items and realizes the consistency and coherence of CF and KG information. Furthermore, KFGAN draws a lesson from graph contrastive learning approach to accomplish refined knowledge graph embedding, which alleviates the interference of redundant KG signal to the model and mines the latent semantic information in KG. Massive experimental results on three benchmark datasets prove that KFGAN model dramatically outperforms the current state-of-the-art baselines. The code and experimental datasets will be available at https://github.com/weiwang1992/KFGAN to verify and study for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
木木彡发布了新的文献求助10
2秒前
2秒前
3秒前
昵称发布了新的文献求助10
3秒前
英俊的铭应助尔风采纳,获得10
4秒前
linjiandefeng发布了新的文献求助10
4秒前
North完成签到 ,获得积分10
4秒前
keyanthrouth发布了新的文献求助30
4秒前
李健应助斯丹康采纳,获得10
4秒前
学术疯子发布了新的文献求助10
4秒前
科研通AI5应助dolabmu采纳,获得30
6秒前
HJC发布了新的文献求助10
6秒前
饼饼发布了新的文献求助30
6秒前
十八稀完成签到,获得积分10
7秒前
Ava应助虚拟的弘文采纳,获得10
7秒前
大方的迎曼完成签到,获得积分20
7秒前
噜噜噜发布了新的文献求助10
8秒前
zhoumin完成签到,获得积分20
9秒前
9秒前
烟花应助Pamburger采纳,获得10
10秒前
科研通AI2S应助lizhiqian2024采纳,获得10
11秒前
彭于彦祖应助lizhiqian2024采纳,获得10
11秒前
11秒前
丘比特应助hero采纳,获得10
11秒前
asuka完成签到,获得积分20
12秒前
12秒前
nv完成签到,获得积分10
12秒前
天天快乐应助面包采纳,获得10
12秒前
13秒前
ziluolan007完成签到,获得积分10
13秒前
BWL发布了新的文献求助10
14秒前
活力鸡完成签到,获得积分10
14秒前
大力傲珊完成签到,获得积分10
15秒前
灰色与青发布了新的文献求助10
15秒前
今后应助1111采纳,获得10
16秒前
16秒前
纯真忆秋完成签到,获得积分10
17秒前
坦率铃铛完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805912
求助须知:如何正确求助?哪些是违规求助? 3350817
关于积分的说明 10351267
捐赠科研通 3066685
什么是DOI,文献DOI怎么找? 1684088
邀请新用户注册赠送积分活动 809298
科研通“疑难数据库(出版商)”最低求助积分说明 765432