MOFS-REPLS: A large-scale multi-objective feature selection algorithm based on real-valued encoding and preference leadership strategy

编码(内存) 选择(遗传算法) 偏爱 特征选择 计算机科学 比例(比率) 特征(语言学) 人工智能 算法 数据挖掘 机器学习 数学 统计 哲学 物理 量子力学 语言学
作者
Qiyong Fu,Qi Li,Xiaobo Li,Hui Wang,Jiapin Xie,Qian Wang
出处
期刊:Information Sciences [Elsevier]
卷期号:667: 120483-120483 被引量:21
标识
DOI:10.1016/j.ins.2024.120483
摘要

Multi-objective feature selection (MOFS) has emerged as a crucial step in constructing efficient machine-learning models. While multi-objective evolutionary algorithms often yield satisfactory sub-optimal solutions, enhancing these algorithms' global optimization capacity remains a central challenge in the field of engineering optimization. To improve the quality of solutions to problems, there is an imperative need for an algorithm with superior optimization capability. This study introduces a large-scale MOFS algorithm based on real-valued encoding and a preference leadership strategy, named MOFS-REPLS, which aims to address the challenge of large-scale sparse feature selection (FS). First, we propose a novel encoding scheme to facilitate broader population exploration. During the population initialization phase, we integrate a ReliefF-guided approach with roulette wheel selection to create the initial population. Second, we introduce a preference leadership strategy that directs individuals toward their respective areas in the Pareto front. Finally, we devise an adaptive learning strategy incorporating ReliefF-guided methods to steer the evolution of the population, thereby mitigating performance deficiencies due to the algorithm's lack of prior knowledge. MOFS-REPLS employs a dual-archive mechanism to maintain diversity within the algorithm and to preserve non-dominated solutions for further exploration. Through experimental assessment using 20 UCI datasets and 10 state-of-the-art algorithms, we demonstrate the effectiveness of MOFS-REPLS. The results show that our proposed algorithm not only maintains high accuracy but also selects a smaller, more relevant set of features, significantly outperforming other FS algorithms in comparison.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适的迎梦完成签到,获得积分10
1秒前
科研kke完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
Tcell完成签到,获得积分10
2秒前
kyle完成签到,获得积分10
2秒前
3秒前
3秒前
宁羽发布了新的文献求助10
3秒前
科研通AI6应助darlinglu采纳,获得10
3秒前
姚佳麒完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
干净青槐完成签到,获得积分10
4秒前
科目三应助jiangqqi采纳,获得10
4秒前
英姑应助开心的西瓜采纳,获得10
5秒前
云起龙都完成签到,获得积分10
5秒前
5秒前
6秒前
缥缈老九完成签到,获得积分10
6秒前
avalanche应助洁净的易巧采纳,获得30
6秒前
SciGPT应助guyan采纳,获得10
6秒前
wanggaga发布了新的文献求助10
7秒前
重要问丝发布了新的文献求助10
7秒前
喃喃发布了新的文献求助10
7秒前
stand发布了新的文献求助10
7秒前
dfghjkl发布了新的文献求助10
7秒前
xk完成签到,获得积分10
7秒前
hql_sdu完成签到,获得积分10
8秒前
8秒前
8秒前
李爱国应助木炭采纳,获得10
8秒前
8秒前
生动思烟完成签到 ,获得积分10
8秒前
9秒前
毛毛发布了新的文献求助10
9秒前
宁羽完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914