Full-Scale Feature Aggregation and Grouping Feature Reconstruction-Based UAV Image Target Detection

特征(语言学) 计算机科学 人工智能 模式识别(心理学) 比例(比率) 特征提取 计算机视觉 目标检测 特征检测(计算机视觉) 迭代重建 图像(数学) 遥感 图像处理 地质学 地图学 地理 哲学 语言学
作者
Yunzuo Zhang,Cunyu Wu,Tian Zhang,Yuxin Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:26
标识
DOI:10.1109/tgrs.2024.3392794
摘要

Unmanned Aerial Vehicle (UAV) image target detection holds significant value for a wide range of applications in modern society. However, due to the variable flight altitude of UAV, the captured images often exhibit significant differences at the target scale and contain a large number of small targets. The existing methods are difficult to adapt to these changes, resulting in a decrease in detection accuracy. To address this issue, this paper proposes a new method for UAV image object detection based on full scale feature aggregation and grouped feature reconstruction FFAGRNet. Firstly, existing feature fusion methods are hindered by the layer-by-layer transfer structure, which limits effective information exchange between feature maps of different scales. In response, we propose the Full-scale Feature Aggregation module (FFA), which performs scale adaptation and information aggregation across multiple sets of feature maps, producing high-quality aggregated feature maps. Secondly, to further refine aggregation features and eliminate redundancy, we introduce the Grouping Feature Reconstruction module (GFR). This module subdivides aggregation features into multiple sub-level features, allowing them to autonomously learn channel and spatial layouts of target features. Lastly, we present the Parallel Super-resolution Semantic Enhancement module (PSSE) to reconstruct deep feature maps and incorporate spatial contextual information, effectively increasing the proportion of semantic information and enhancing the model's ability to classify ambiguous targets. To validate the effectiveness of our proposed method, extensive experiments were conducted on the VisDrone2021 and UAVDT datasets. The results demonstrate that compared to the baseline, our method achieves a significant improvement in mAP 50 , with increases of 7.6% and 4.6% respectively, showcasing excellent performance compared to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小石猛猛冲完成签到 ,获得积分10
刚刚
ffff完成签到,获得积分10
刚刚
Ryan123完成签到,获得积分10
1秒前
太微北发布了新的文献求助10
1秒前
3秒前
4秒前
伽娜发布了新的文献求助10
6秒前
帅哥发布了新的文献求助10
7秒前
CipherSage应助大胆绮兰采纳,获得10
8秒前
Lunatic发布了新的文献求助10
8秒前
8秒前
跑在颖完成签到,获得积分20
9秒前
3D发布了新的文献求助20
11秒前
加油小李完成签到 ,获得积分10
11秒前
15秒前
nefu biology发布了新的文献求助10
15秒前
慎独应助ffff采纳,获得10
15秒前
CodeCraft应助伽娜采纳,获得10
16秒前
隐形曼青应助葱油饼采纳,获得10
19秒前
yyf发布了新的文献求助10
19秒前
19秒前
tian完成签到,获得积分10
19秒前
20秒前
iroko完成签到,获得积分10
21秒前
蓝胖子完成签到 ,获得积分10
22秒前
zojoy完成签到,获得积分10
23秒前
25秒前
blue发布了新的文献求助10
25秒前
26秒前
Wu完成签到 ,获得积分10
26秒前
27秒前
大胆绮兰发布了新的文献求助10
28秒前
顾矜应助tian采纳,获得10
31秒前
葱油饼发布了新的文献求助10
32秒前
33秒前
Hello应助yecheng采纳,获得10
34秒前
35秒前
36秒前
李健应助感动沉鱼采纳,获得10
36秒前
37秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097022
求助须知:如何正确求助?哪些是违规求助? 3634645
关于积分的说明 11521452
捐赠科研通 3345157
什么是DOI,文献DOI怎么找? 1838452
邀请新用户注册赠送积分活动 906081
科研通“疑难数据库(出版商)”最低求助积分说明 823435