已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Construction Health Indicator using Physically-Informed 1D-WGAN-GP Joint Attention LSTM-DenseNet Method

接头(建筑物) 计算机科学 人工智能 结构工程 工程类
作者
Hai Yang,Xudong Yang,Dong Sun,Yunjin Hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076204-076204 被引量:1
标识
DOI:10.1088/1361-6501/ad38d4
摘要

Abstract In data-driven prognosis methods, the accuracy of predicting the remaining useful life (RUL) of mechanical systems is predominantly contingent upon the efficacy of system health indicators (HI), typically amalgamated from statistical features derived from collected signals. Nevertheless, the majority of extant HI are beset by two principal shortcomings: (1) during traditional data denoising processes, degradation information from raw data is prone to loss owing to the lack of incorporation of the true physical properties of the data; and (2) the performance evaluation of constructed HI is imbalanced due to the influence of network structures on single models, often resulting in strong performance in only one or two indicators. To overcome such shortcomings, a mechanical health indicator construction method based on physical properties was proposed, termed 1D-WGAN-GP Joint attention LSTM-DenseNet. Firstly, artificial sample data is generated by analyzing the physical properties of the original dataset, which is then used to train the 1D-WGAN-GP model to achieve data denoising. Subsequently, the fusion of the attention LSTM (A-LSTM) network and DenseNet network is utilized to extract crucial feature vectors of HI under varying health conditions from the denoised data. Finally, the extracted feature vectors are used to construct system HI using the Euclidean distance method, and these indicators are used for predicting the system’s RUL. The results indicate that the proposed method outperformed traditional methods in terms of denoising effectiveness. Further, through ablation experiment analysis, the HI constructed by the proposed method demonstrated obvious complementarity in terms of monotonicity, correlation, robustness, and comprehensive evaluation. In RUL prediction applications, the proposed method also exhibited good performance, thereby validating its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
jian应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
科研通AI2S应助优秀的莹采纳,获得10
4秒前
hautzhl发布了新的文献求助10
8秒前
9秒前
小飞飞完成签到,获得积分10
9秒前
mm完成签到,获得积分20
9秒前
UsihaGuwalgiya完成签到,获得积分10
11秒前
领导范儿应助Zenglongying采纳,获得10
12秒前
12秒前
天天快乐应助Toby采纳,获得10
13秒前
光盘行动发布了新的文献求助10
14秒前
大个应助优秀的莹采纳,获得10
14秒前
mufeixue发布了新的文献求助10
14秒前
15秒前
充电宝应助mm采纳,获得10
15秒前
17秒前
18秒前
21秒前
壮观以松发布了新的文献求助10
21秒前
Eating发布了新的文献求助10
22秒前
22秒前
23秒前
Zenglongying发布了新的文献求助10
24秒前
25秒前
25秒前
加湿器发布了新的文献求助10
27秒前
daisy应助unowhoiam采纳,获得20
28秒前
dt发布了新的文献求助10
29秒前
乌苏完成签到 ,获得积分10
30秒前
沉静酸奶完成签到,获得积分10
31秒前
英俊的铭应助王路飞采纳,获得10
33秒前
星空棒棒糖完成签到,获得积分10
34秒前
hhh完成签到 ,获得积分10
36秒前
36秒前
37秒前
小樊同学发布了新的文献求助10
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792341
求助须知:如何正确求助?哪些是违规求助? 3336534
关于积分的说明 10281314
捐赠科研通 3053247
什么是DOI,文献DOI怎么找? 1675545
邀请新用户注册赠送积分活动 803525
科研通“疑难数据库(出版商)”最低求助积分说明 761436