Deep learning-based reconstruction of supercritical fluids flow field

物理 超临界流体 机械 领域(数学) 流量(数学) 经典力学 统计物理学 热力学 数学 纯数学
作者
Cheng‐Peng Li,Yu Feng,Shuai Xu,Xiaozhou He,Feng Chen,Xingguo Wei,Jiang Qin
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (5)
标识
DOI:10.1063/5.0266275
摘要

Supercritical fluids are widely used in heat transfer and energy systems. However, the drastic thermophysical property changes near the pseudo-critical region lead to nonlinear flow and heat transfer behaviors, posing strong challenges for establishing high-efficiency and high-fidelity numerical simulation methods to advance their heat transfer applications. In this study, a multi-module coupled network (MMC-Net) with a tandem structure is proposed based on deep learning for reconstructing the flow field of supercritical hydrocarbon fuels within regenerative cooling channels. To improve the reconstruction accuracy in the entrance region and ensure consistent reliability of performance, a segmented reconstruction method is introduced. The results demonstrate that MMC-Net effectively captures the nonlinear flow and heat transfer characteristics of supercritical hydrocarbon fuels, exhibiting strong extrapolation capability and robustness. Tests on three datasets show that the average relative errors for the temperature and velocity fields are 0.047 and 0.104, respectively. Furthermore, compared to computational fluid dynamics (CFD), MMC-Net reduces computational complexity by approximately five orders of magnitude while still achieving excellent reconstruction of the thermal acceleration phenomenon unique to supercritical fluids. These results prove that the practicality of the network could provide an auxiliary or alternative approach for engineering applications related to supercritical fluids.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果汁完成签到,获得积分10
刚刚
调皮万宝路完成签到,获得积分10
刚刚
sally完成签到,获得积分20
刚刚
刚刚
顾矜应助TangQQ采纳,获得10
1秒前
打工人发布了新的文献求助10
1秒前
Alan完成签到,获得积分10
2秒前
2秒前
2秒前
兴奋的万声完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
柯飞扬发布了新的文献求助10
3秒前
还有晴天发布了新的文献求助30
4秒前
健壮不斜完成签到 ,获得积分10
4秒前
沉默士萧发布了新的文献求助30
6秒前
6秒前
6秒前
大气早晨发布了新的文献求助10
6秒前
香蕉初瑶发布了新的文献求助10
7秒前
7秒前
宇宙第一甜妹完成签到 ,获得积分10
8秒前
四然完成签到,获得积分10
9秒前
顾矜应助打工人采纳,获得10
9秒前
9秒前
lpp发布了新的文献求助10
9秒前
大气建辉完成签到 ,获得积分10
10秒前
10秒前
鲤鱼羿发布了新的文献求助10
11秒前
pure123发布了新的文献求助30
11秒前
上官若男应助peng采纳,获得10
11秒前
还有晴天完成签到,获得积分10
12秒前
CarterXD完成签到,获得积分10
12秒前
大气早晨完成签到,获得积分10
12秒前
12秒前
111发布了新的文献求助10
13秒前
13秒前
Rrrr完成签到,获得积分10
14秒前
怕黑傲柏完成签到 ,获得积分10
15秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816810
求助须知:如何正确求助?哪些是违规求助? 3360247
关于积分的说明 10407179
捐赠科研通 3078205
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813983
科研通“疑难数据库(出版商)”最低求助积分说明 767924