亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reclassifying NOBOX variants in primary ovarian insufficiency cases with a corrected gene model and a novel quantitative framework

生物 遗传学 基因 人类遗传学 转录组 计算生物学 基因表达谱 基因亚型 基因表达
作者
Reiner A. Veitia,James Cowles,Sandrine Caburet
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:40 (6): 1220-1233 被引量:1
标识
DOI:10.1093/humrep/deaf058
摘要

Abstract STUDY QUESTION How updated expression and genomic data combined with a disease/disorder-specific classification system can be used to correct a gene model for a better evaluation of the pathogenicity of variants found in patients? SUMMARY ANSWER By combining available genomic and transcriptomic data from several species and a quantitative classification framework with primary ovarian insufficiency (POI)-adjusted parameters, we correct the human NOBOX (newborn ovary homeobox) gene model and provide a reclassification of variants previously reported in POI cases. WHAT IS KNOWN ALREADY The NOBOX gene, encoding a gonad-specific transcription factor with a crucial role in early folliculogenesis and considered a major gene involved in POI, is currently described as being expressed as four transcripts, the longest one considered canonical. All the variants identified in POI cases have been evaluated according to this canonical transcript, and the various functional tests have been performed using the corresponding predicted protein. STUDY DESIGN, SIZE, DURATION We refined and corrected the NOBOX gene model using available genomic and RNAseq data in human and 16 other mammalian species. Expression data were selected for tissue specificity, strand specificity, and coverage. The analysis of RNAseq data from different ovarian fetal stages allows for a time-course description of NOBOX isoforms. Literature was scanned to retrieve NOBOX variants reported in POI cases, and NOBOX variants present in ClinVar and GnomAD 4 databases were also retrieved. PARTICIPANTS/MATERIALS, SETTING, METHODS Strand-specific RNAseq data from human fetal ovaries and human adult testes were analysed to infer the correct human NOBOX gene isoforms. The conservation of the gene structure was verified by combining the aligned genomic sequences from 17 mammalian species covering a wide phylogenetic range and the relevant RNAseq data. As changing a gene model implies a reclassification of variants, we set up a quantitative framework with updated variant frequencies from GnomAD4 and POI-adjusted parameters following the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. Using this framework, we reclassified 44 NOBOX variants reported in POI patients and families, 117 NOBOX variants reported in ClinVar, and 2613 NOBOX variants present in GnomAD4. MAIN RESULTS AND THE ROLE OF CHANCE The corrected NOBOX gene model proposes the invalidation of two transcripts, including the canonical one. The two correct isoforms were present in fetal ovarian samples, and only one was detected in adult testes. Only 14 variants remained as possibly causative for POI. Furthermore, this re-evaluation strongly suggests that NOBOX biallelic variants are the most likely cause of POI. LARGE SCALE DATA Large tables are provided as supplementary data sets on the Zenodo repository. LIMITATIONS, REASONS FOR CAUTION The proposed gene model is robust but relies on available transcriptomic data covering a range of time points and tissues. Our scoring system was manually adjusted and other laboratories can implement it with different parameters. WIDER IMPLICATIONS OF THE FINDINGS For the NOBOX variants that cannot be considered pathogenic or causative anymore, the genome/exome sequencing data of the corresponding patients should be reanalysed. Furthermore, the functional studies performed using the obsolete coding sequence should be reconsidered. The corrected gene model should be taken into account when evaluating novel NOBOX variants identified in POI patients. Our results highlight the importance of the careful assessment of the most updated expression data for validating a gene model, enabling a correct evaluation of the pathogenicity of variants found in patients. The proposed quantitative framework developed here can be used for the classification of variants in other genes underlying POI. Furthermore, the global approach based on quantitatively adjusting the ACMG/AMP guidelines could be extended to other inherited pathologies. STUDY FUNDING/COMPETING INTEREST(S) This project was not funded. All the authors have no conflict of interest to disclose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助he采纳,获得10
9秒前
Viiigo完成签到,获得积分10
52秒前
1分钟前
1分钟前
1分钟前
小船发布了新的文献求助10
1分钟前
1分钟前
小船完成签到,获得积分20
1分钟前
he发布了新的文献求助10
1分钟前
Ethan完成签到,获得积分10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
脑洞疼应助he采纳,获得10
1分钟前
半喇柯基完成签到 ,获得积分10
1分钟前
111完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
852应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得150
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
he发布了新的文献求助10
3分钟前
NexusExplorer应助宗友绿采纳,获得10
3分钟前
俊逸的幻悲关注了科研通微信公众号
3分钟前
4分钟前
小二郎应助he采纳,获得10
4分钟前
4分钟前
4分钟前
corleeang完成签到 ,获得积分10
4分钟前
4分钟前
drsherlock发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
宗友绿发布了新的文献求助10
5分钟前
5分钟前
周曦完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470184
求助须知:如何正确求助?哪些是违规求助? 4573079
关于积分的说明 14338028
捐赠科研通 4500099
什么是DOI,文献DOI怎么找? 2465545
邀请新用户注册赠送积分活动 1453896
关于科研通互助平台的介绍 1428525