RPNet: Robust P-Wave First-Motion Polarity Determination Using Deep Learning

极性(国际关系) 运动(物理) 地质学 人工智能 波浪运动 计算机科学 物理 化学 机械 生物化学 细胞
作者
Jongwon Han,Seongryong Kim,Dong‐Hoon Sheen
出处
期刊:Seismological Research Letters [Seismological Society of America]
标识
DOI:10.1785/0220240384
摘要

Abstract We present RPNet, a robust deep-learning model for P-wave first-motion polarity determination aimed at deriving earthquake focal mechanism solutions. RPNet integrates advanced deep-learning techniques, including inception modules, attention mechanisms, and Monte Carlo dropout, to improve prediction accuracy and stability with quantified uncertainty. We conduct benchmark tests against four existing models using data sets from the western United States and Italy. The results address key issues such as sensitivity to misaligned P-wave onsets, class imbalance between up and down polarities, and handling of “unknown” labels. To enhance robustness, we apply intensive random time shifts of P-wave onsets within a ± 0.5 s range during training. To address the class imbalance, RPNet is trained with an equal amount of data for both up and down polarities. The performance of RPNet is evaluated through three tests. First, we test RPNet on a data set comprising 10% of the data excluded from training, achieving 99% recall for both up and down polarities. Next, we apply RPNet to independent Hi-net data from Japan, where it demonstrates superior generalization compared to previous deep-learning models, achieving recall rates above 97.5% even under time shifts of up to ±0.40 s. Finally, RPNet is tested on the 2016 Kumamoto earthquake sequence, where its automatically derived focal mechanism solutions closely match those manually derived by the Japan Meteorological Agency, outperforming the previous model in Kagan angle and polarity misfit. These results highlight RPNet’s potential as a reliable tool for automating focal mechanism derivation across diverse regions and waveform conditions without the need for additional optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酱紫应助w王w采纳,获得10
1秒前
丘比特应助linciko采纳,获得10
2秒前
殷勤的硬币关注了科研通微信公众号
2秒前
辛未发布了新的文献求助10
2秒前
搜集达人应助炙热的小小采纳,获得10
4秒前
4秒前
老肥完成签到,获得积分10
4秒前
wy.he举报giao快查求助涉嫌违规
5秒前
5秒前
delll发布了新的文献求助10
6秒前
kmelo完成签到,获得积分10
7秒前
wszl发布了新的文献求助10
7秒前
9秒前
001发布了新的文献求助10
9秒前
9秒前
鄢懋卿应助小小怪采纳,获得10
11秒前
华仔应助小小怪采纳,获得10
11秒前
12秒前
12秒前
accept应助元谷雪采纳,获得10
13秒前
科研通AI5应助宫冷雁采纳,获得10
14秒前
aldehyde应助项阑悦采纳,获得10
14秒前
14秒前
美满花生发布了新的文献求助10
14秒前
FJ发布了新的文献求助10
14秒前
fafafa完成签到,获得积分10
15秒前
16秒前
ding应助wszl采纳,获得30
16秒前
17秒前
17秒前
accept应助科演小能手采纳,获得10
17秒前
一丸完成签到 ,获得积分20
17秒前
研友_Z33zkZ发布了新的文献求助10
18秒前
Yealow完成签到,获得积分10
18秒前
共享精神应助lizhiqian2024采纳,获得10
18秒前
冇燚发布了新的文献求助10
19秒前
科研通AI2S应助Kuripa采纳,获得10
20秒前
大个应助HiNDT采纳,获得10
20秒前
harry2021完成签到,获得积分10
21秒前
威武的邪欢完成签到,获得积分10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790721
求助须知:如何正确求助?哪些是违规求助? 3335649
关于积分的说明 10275642
捐赠科研通 3052119
什么是DOI,文献DOI怎么找? 1675026
邀请新用户注册赠送积分活动 803005
科研通“疑难数据库(出版商)”最低求助积分说明 761007