二氧化碳
还原(数学)
二氧化碳电化学还原
材料科学
自旋(空气动力学)
中心(范畴论)
国家(计算机科学)
碳纤维
化学
纳米技术
物理
计算机科学
催化作用
一氧化碳
热力学
结晶学
复合材料
数学
有机化学
几何学
算法
复合数
作者
Shuang‐Quan Zang,Zhen Chen,Jiankang Liu,Jianpeng Li,Yueteng Zhang,Jia Yang,Jun Li,Zhiyuan Wang,Zhongyi Liu
标识
DOI:10.1002/anie.202506845
摘要
Single atom catalysts (SACs) have been widely investigated and regarded as the promising electrocatalysts for carbon dioxide reduction. However, studies on the impact of coordinated‐nitrogen species in active center on the spin state and catalytic activity remain scarce. Herein, two single Ni atom electrocatalysts with distinct pyridinic‐N and pyrrolic‐N coordination through a rapid joule‐heating method that preserves precursor nitrogen configurations. Magnetic susceptibility measurements reveal that pyridinic‐N induces a high‐spin state in Ni centers, while pyrrolic‐N stabilizes a low‐spin configuration. The high‐spin Ni‐Npyridinic‐C demonstrates an exceptional performance in electrocatalytic CO2 reduction, achieving 98.8% CO Faradaic efficiency in H‐cells and maintaining >99% Faradaic efficiency at industrial current densities (≥250 mA cm‐2) across alkaline, neutral, and acidic electrolytes in a gas‐diffusion flow cell. A maximum power density of 1.89 mW/cm2 and excellent charge‐discharge cyclability also achieve in zinc‐CO2 battery, further demonstrating the applicability of Ni‐Npyridinic‐C. Theoretical calculations demonstrate that the high‐spin state enhances d‐orbital dispersion, strengthening hybridization with π* orbital of CO2 and stabilizing *COOH intermediates, thereby accelerating CO2 activation. This study not only establishes a novel strategy for spin‐state engineering through coordination control but also advances scalable electrocatalyst design for efficient carbon cycling.
科研通智能强力驱动
Strongly Powered by AbleSci AI