An interpretable anti-noise convolutional neural network for online chatter detection in thin-walled parts milling

可解释性 判别式 计算机科学 噪音(视频) 特征(语言学) 卷积神经网络 频域 人工智能 干扰(通信) 模式识别(心理学) 频带 计算机视觉 图像(数学) 频道(广播) 计算机网络 哲学 语言学 带宽(计算)
作者
Yezhong Lu,Haifeng Ma,Yuxin Sun,Qinghua Song,Zhanqiang Liu,Zhenhua Xiong
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:206: 110885-110885 被引量:15
标识
DOI:10.1016/j.ymssp.2023.110885
摘要

Chatter is a notoriously unstable phenomenon that can adversely affect both surface quality and machining efficiency. To achieve high-performance machining, the development of online chatter detection is of paramount importance. Nevertheless, changes in chatter frequency with cutting position and noise interference during the thin-walled parts milling process present significant challenges to chatter detection. To tackle this issue, an adaptive frequency band attention module (AFBAM) is designed, which is characterized by not relying on prior knowledge (namely modal parameters, frequency spectrum analysis, etc.), and adaptively enhances the frequency band containing abundant chatter information and reduces noise interference by learning time-frequency domain characteristics of signals. After AFBAM highlights the relevant frequency band of input signal, a discriminative feature attention module (DFAM) is constructed to adaptively recalibrate feature responses of each convolutional layer utilizing the global information. DFAM enhances relevant features and suppresses irrelevant features, thus improving the discriminative feature learning and redundant information suppression abilities of network. In addition, both AFBAM and DFAM exhibit clear physical interpretability, which improves the interpretability of network. Based on AFBAM and DFAM, an interpretable anti-noise convolutional neural network for online chatter detection, named AD-CNN, is established. Milling experiments with pocket-shaped thin-walled parts are conducted under different cutting parameters. The results show that the proposed method enables better detection accuracy and anti-noise ability than other state-of-the-art methods. Furthermore, visualization analysis of AFBAM and DFAM brings new insights into the interpretability of convolutional neural network in the field of chatter detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助LLJ采纳,获得10
刚刚
你的完成签到 ,获得积分10
1秒前
香蕉觅云应助笑点低的靳采纳,获得10
2秒前
赘婿应助xx采纳,获得30
3秒前
devilito发布了新的文献求助30
3秒前
科研通AI5应助herdwind采纳,获得10
5秒前
6秒前
腼腆的康完成签到 ,获得积分10
6秒前
10秒前
kk完成签到,获得积分10
11秒前
11秒前
HughWang完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
ttracc完成签到 ,获得积分10
13秒前
herdwind发布了新的文献求助10
16秒前
xx发布了新的文献求助30
16秒前
17秒前
YMkaiye发布了新的文献求助10
19秒前
小小完成签到,获得积分10
19秒前
herdwind完成签到,获得积分10
23秒前
27秒前
xx完成签到,获得积分10
33秒前
34秒前
peiling发布了新的文献求助10
34秒前
YOLO完成签到 ,获得积分10
36秒前
36秒前
YMkaiye完成签到,获得积分20
38秒前
秘密学习完成签到 ,获得积分10
38秒前
39秒前
zywii发布了新的文献求助10
40秒前
Hello应助科研通管家采纳,获得10
40秒前
Ava应助科研通管家采纳,获得10
40秒前
zmnzmnzmn应助科研通管家采纳,获得10
40秒前
Orange应助peiling采纳,获得10
40秒前
zmnzmnzmn应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
落后醉易发布了新的文献求助10
41秒前
郭郭发布了新的文献求助10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778910
求助须知:如何正确求助?哪些是违规求助? 3324505
关于积分的说明 10218641
捐赠科研通 3039496
什么是DOI,文献DOI怎么找? 1668258
邀请新用户注册赠送积分活动 798634
科研通“疑难数据库(出版商)”最低求助积分说明 758440